Cargando…
Premature thymic involution is independent of structural plasticity of the thymic stroma
The thymus is the organ devoted to T-cell production. The thymus undergoes multiple rounds of atrophy and redevelopment before degenerating with age in a process known as involution. This process is poorly understood, despite the influence the phenomenon has on peripheral T-cell numbers. Here we hav...
Autores principales: | , , , , , , , , , |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
John Wiley & Sons, Ltd
2015
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC4670717/ https://www.ncbi.nlm.nih.gov/pubmed/25627671 http://dx.doi.org/10.1002/eji.201445277 |
Sumario: | The thymus is the organ devoted to T-cell production. The thymus undergoes multiple rounds of atrophy and redevelopment before degenerating with age in a process known as involution. This process is poorly understood, despite the influence the phenomenon has on peripheral T-cell numbers. Here we have investigated the FVB/N mouse strain, which displays premature thymic involution. We find multiple architectural and cellular features that precede thymic involution, including disruption of the epithelial–endothelial relationship and a progressive loss of pro-T cells. The architectural features, reminiscent of the human thymus, are intrinsic to the nonhematopoietic compartment and are neither necessary nor sufficient for thymic involution. By contrast, the loss of pro-T cells is intrinsic to the hematopoietic compartment, and is sufficient to drive premature involution. These results identify pro-T-cell loss as the main driver of premature thymic involution, and highlight the plasticity of the thymic stroma, capable of maintaining function across diverse interstrain architectures. |
---|