Cargando…

Endometrial Mesenchymal Stem Cells Isolated from Menstrual Blood by Adherence

Objective. To find a convenient and efficient way to isolate MSCs from human menstrual blood and to investigate their biological characteristics, proliferative capacity, and secretion levels. Methods. MSCs were isolated from menstrual blood of 3 healthy women using adherence. Cell immunological phen...

Descripción completa

Detalles Bibliográficos
Autores principales: Du, Xue, Yuan, Qing, Qu, Ye, Zhou, Yuan, Bei, Jia
Formato: Online Artículo Texto
Lenguaje:English
Publicado: Hindawi Publishing Corporation 2016
Materias:
Acceso en línea:https://www.ncbi.nlm.nih.gov/pmc/articles/PMC4670906/
https://www.ncbi.nlm.nih.gov/pubmed/26681948
http://dx.doi.org/10.1155/2016/3573846
Descripción
Sumario:Objective. To find a convenient and efficient way to isolate MSCs from human menstrual blood and to investigate their biological characteristics, proliferative capacity, and secretion levels. Methods. MSCs were isolated from menstrual blood of 3 healthy women using adherence. Cell immunological phenotype was examined by flow cytometry; the adipogenic, osteogenic, and chondrogenic differentiation of MSCs was examined by Oil-Red-O staining, ALP staining, and Alcian Blue staining, respectively; and the secretion of cytokines, including vascular endothelial growth factor (VEGF), hepatocyte growth factor (HGF), and insulin-like growth factor-1 (IGF-1), was detected using enzyme-linked immunosorbent assay. Results. MB-MSCs were successfully isolated from human menstrual blood using adherence. They were positive for CD73, CD105, CD29, and CD44, but negative for CD31 and CD45. The differentiated MB-MSCs were positive for ALP staining, Oil-Red-O staining, and Alcian Blue staining. In addition, they could secrete antiapoptotic cytokines, such as VEGF, IGF-1, and HGF. Conclusion. It is feasible to isolate MSCs from human menstrual blood, thus avoiding invasive procedures and ethical controversies. Adherence could be a promising alternative to the density gradient centrifugation for the isolation of MSCs from menstrual blood.