Cargando…
A highly efficient CMOS nanoplasmonic crystal enhanced slow-wave thermal emitter improves infrared gas-sensing devices
The application of plasmonics to thermal emitters is generally assisted by absorptive losses in the metal because Kirchhoff’s law prescribes that only good absorbers make good thermal emitters. Based on a designed plasmonic crystal and exploiting a slow-wave lattice resonance and spontaneous thermal...
Autores principales: | Pusch, Andreas, De Luca, Andrea, Oh, Sang S., Wuestner, Sebastian, Roschuk, Tyler, Chen, Yiguo, Boual, Sophie, Ali, Zeeshan, Phillips, Chris C., Hong, Minghui, Maier, Stefan A., Udrea, Florin, Hopper, Richard H., Hess, Ortwin |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
Nature Publishing Group
2015
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC4671012/ https://www.ncbi.nlm.nih.gov/pubmed/26639902 http://dx.doi.org/10.1038/srep17451 |
Ejemplares similares
-
Miniaturized thermal acoustic gas sensor based on a CMOS microhotplate and MEMS microphone
por: Hopper, Richard, et al.
Publicado: (2022) -
A highly stable, nanotube-enhanced, CMOS-MEMS thermal emitter for mid-IR gas sensing
por: Popa, Daniel, et al.
Publicado: (2021) -
Crosstalk Analysis of a CMOS Single Membrane Thermopile Detector Array
por: Dai, Ying, et al.
Publicado: (2020) -
Near-Field Generation and Control of Ultrafast, Multipartite
Entanglement for Quantum Nanoplasmonic Networks
por: Bello, Frank Daniel, et al.
Publicado: (2022) -
Decoupling absorption and emission processes in super-resolution localization of emitters in a plasmonic hotspot
por: Mack, David L., et al.
Publicado: (2017)