Cargando…
Semi-Supervised Multi-View Learning for Gene Network Reconstruction
The task of gene regulatory network reconstruction from high-throughput data is receiving increasing attention in recent years. As a consequence, many inference methods for solving this task have been proposed in the literature. It has been recently observed, however, that no single inference method...
Autores principales: | Ceci, Michelangelo, Pio, Gianvito, Kuzmanovski, Vladimir, Džeroski, Sašo |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
Public Library of Science
2015
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC4671612/ https://www.ncbi.nlm.nih.gov/pubmed/26641091 http://dx.doi.org/10.1371/journal.pone.0144031 |
Ejemplares similares
-
Multi-task learning for the simultaneous reconstruction of the human and mouse gene regulatory networks
por: Mignone, Paolo, et al.
Publicado: (2020) -
Integrating microRNA target predictions for the discovery of gene regulatory networks: a semi-supervised ensemble learning approach
por: Pio, Gianvito, et al.
Publicado: (2014) -
Extensive evaluation of the generalized relevance network approach to inferring gene regulatory networks
por: Kuzmanovski, Vladimir, et al.
Publicado: (2018) -
Using PPI network autocorrelation in hierarchical multi-label classification trees for gene function prediction
por: Stojanova, Daniela, et al.
Publicado: (2013) -
ComiRNet: a web-based system for the analysis of miRNA-gene regulatory networks
por: Pio, Gianvito, et al.
Publicado: (2015)