Cargando…

Conserved E2F mediated metastasis in mouse models of breast cancer and HER2 positive patients

To improve breast cancer patient outcome work must be done to understand and block tumor metastasis. This study leverages bioinformatics techniques and traditional genetic screens to create a novel method of discovering potential contributors of tumor progression with a focus on tumor metastasis. A...

Descripción completa

Detalles Bibliográficos
Autores principales: Rennhack, Jonathan, Andrechek, Eran
Formato: Online Artículo Texto
Lenguaje:English
Publicado: Impact Journals LLC 2015
Materias:
Acceso en línea:https://www.ncbi.nlm.nih.gov/pmc/articles/PMC4671953/
https://www.ncbi.nlm.nih.gov/pubmed/26682278
Descripción
Sumario:To improve breast cancer patient outcome work must be done to understand and block tumor metastasis. This study leverages bioinformatics techniques and traditional genetic screens to create a novel method of discovering potential contributors of tumor progression with a focus on tumor metastasis. A database of 1172 of expression data from a variety of mouse models of breast cancer was assembled and queried using previously defined oncogenic activity signatures. This analysis revealed high activity of the E2F family of transcription factors in the MMTV-Neu mouse model. A genetic cross of MMTV-Neu mice into an E2F1 null, E2F2 null, or E2F3 heterozygous background revealed significant changes in tumor progression specifically reductions in tumor latency and metastasis with E2F1 or E2F2 loss. These findings were found to be conserved in human HER2 positive patients. Patients with high E2F1 activity were shown to have worse outcomes such as relapse free survival and distant metastasis free survival. This study shows conserved mechanisms of tumor progression in human breast cancer subtypes and analogous mouse models and underlies the importance of increased research into the characterization of and comparisons between mouse and human tumors to identify which mouse models resemble each subtype of human breast cancer.