Cargando…

Exploiting Transient Protein States for the Design of Small-Molecule Stabilizers of Mutant p53

The destabilizing p53 cancer mutation Y220C creates an extended crevice on the surface of the protein that can be targeted by small-molecule stabilizers. Here, we identify different classes of small molecules that bind to this crevice and determine their binding modes by X-ray crystallography. These...

Descripción completa

Detalles Bibliográficos
Autores principales: Joerger, Andreas C., Bauer, Matthias R., Wilcken, Rainer, Baud, Matthias G.J., Harbrecht, Hannes, Exner, Thomas E., Boeckler, Frank M., Spencer, John, Fersht, Alan R.
Formato: Online Artículo Texto
Lenguaje:English
Publicado: Cell Press 2015
Materias:
Acceso en línea:https://www.ncbi.nlm.nih.gov/pmc/articles/PMC4671956/
https://www.ncbi.nlm.nih.gov/pubmed/26636255
http://dx.doi.org/10.1016/j.str.2015.10.016
_version_ 1782404476462694400
author Joerger, Andreas C.
Bauer, Matthias R.
Wilcken, Rainer
Baud, Matthias G.J.
Harbrecht, Hannes
Exner, Thomas E.
Boeckler, Frank M.
Spencer, John
Fersht, Alan R.
author_facet Joerger, Andreas C.
Bauer, Matthias R.
Wilcken, Rainer
Baud, Matthias G.J.
Harbrecht, Hannes
Exner, Thomas E.
Boeckler, Frank M.
Spencer, John
Fersht, Alan R.
author_sort Joerger, Andreas C.
collection PubMed
description The destabilizing p53 cancer mutation Y220C creates an extended crevice on the surface of the protein that can be targeted by small-molecule stabilizers. Here, we identify different classes of small molecules that bind to this crevice and determine their binding modes by X-ray crystallography. These structures reveal two major conformational states of the pocket and a cryptic, transiently open hydrophobic subpocket that is modulated by Cys220. In one instance, specifically targeting this transient protein state by a pyrrole moiety resulted in a 40-fold increase in binding affinity. Molecular dynamics simulations showed that both open and closed states of this subsite were populated at comparable frequencies along the trajectories. Our data extend the framework for the design of high-affinity Y220C mutant binders for use in personalized anticancer therapy and, more generally, highlight the importance of implementing protein dynamics and hydration patterns in the drug-discovery process.
format Online
Article
Text
id pubmed-4671956
institution National Center for Biotechnology Information
language English
publishDate 2015
publisher Cell Press
record_format MEDLINE/PubMed
spelling pubmed-46719562015-12-23 Exploiting Transient Protein States for the Design of Small-Molecule Stabilizers of Mutant p53 Joerger, Andreas C. Bauer, Matthias R. Wilcken, Rainer Baud, Matthias G.J. Harbrecht, Hannes Exner, Thomas E. Boeckler, Frank M. Spencer, John Fersht, Alan R. Structure Article The destabilizing p53 cancer mutation Y220C creates an extended crevice on the surface of the protein that can be targeted by small-molecule stabilizers. Here, we identify different classes of small molecules that bind to this crevice and determine their binding modes by X-ray crystallography. These structures reveal two major conformational states of the pocket and a cryptic, transiently open hydrophobic subpocket that is modulated by Cys220. In one instance, specifically targeting this transient protein state by a pyrrole moiety resulted in a 40-fold increase in binding affinity. Molecular dynamics simulations showed that both open and closed states of this subsite were populated at comparable frequencies along the trajectories. Our data extend the framework for the design of high-affinity Y220C mutant binders for use in personalized anticancer therapy and, more generally, highlight the importance of implementing protein dynamics and hydration patterns in the drug-discovery process. Cell Press 2015-12-01 /pmc/articles/PMC4671956/ /pubmed/26636255 http://dx.doi.org/10.1016/j.str.2015.10.016 Text en © 2015 The Authors http://creativecommons.org/licenses/by/4.0/ This is an open access article under the CC BY license (http://creativecommons.org/licenses/by/4.0/).
spellingShingle Article
Joerger, Andreas C.
Bauer, Matthias R.
Wilcken, Rainer
Baud, Matthias G.J.
Harbrecht, Hannes
Exner, Thomas E.
Boeckler, Frank M.
Spencer, John
Fersht, Alan R.
Exploiting Transient Protein States for the Design of Small-Molecule Stabilizers of Mutant p53
title Exploiting Transient Protein States for the Design of Small-Molecule Stabilizers of Mutant p53
title_full Exploiting Transient Protein States for the Design of Small-Molecule Stabilizers of Mutant p53
title_fullStr Exploiting Transient Protein States for the Design of Small-Molecule Stabilizers of Mutant p53
title_full_unstemmed Exploiting Transient Protein States for the Design of Small-Molecule Stabilizers of Mutant p53
title_short Exploiting Transient Protein States for the Design of Small-Molecule Stabilizers of Mutant p53
title_sort exploiting transient protein states for the design of small-molecule stabilizers of mutant p53
topic Article
url https://www.ncbi.nlm.nih.gov/pmc/articles/PMC4671956/
https://www.ncbi.nlm.nih.gov/pubmed/26636255
http://dx.doi.org/10.1016/j.str.2015.10.016
work_keys_str_mv AT joergerandreasc exploitingtransientproteinstatesforthedesignofsmallmoleculestabilizersofmutantp53
AT bauermatthiasr exploitingtransientproteinstatesforthedesignofsmallmoleculestabilizersofmutantp53
AT wilckenrainer exploitingtransientproteinstatesforthedesignofsmallmoleculestabilizersofmutantp53
AT baudmatthiasgj exploitingtransientproteinstatesforthedesignofsmallmoleculestabilizersofmutantp53
AT harbrechthannes exploitingtransientproteinstatesforthedesignofsmallmoleculestabilizersofmutantp53
AT exnerthomase exploitingtransientproteinstatesforthedesignofsmallmoleculestabilizersofmutantp53
AT boecklerfrankm exploitingtransientproteinstatesforthedesignofsmallmoleculestabilizersofmutantp53
AT spencerjohn exploitingtransientproteinstatesforthedesignofsmallmoleculestabilizersofmutantp53
AT fershtalanr exploitingtransientproteinstatesforthedesignofsmallmoleculestabilizersofmutantp53