Cargando…
Prediction of Druggable Proteins Using Machine Learning and Systems Biology: A Mini-Review
The emergence of -omics technologies has allowed the collection of vast amounts of data on biological systems. Although, the pace of such collection has been exponential, the impact of these data remains small on many critical biomedical applications such as drug development. Limited resources, high...
Autores principales: | Kandoi, Gaurav, Acencio, Marcio L., Lemke, Ney |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
Frontiers Media S.A.
2015
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC4672042/ https://www.ncbi.nlm.nih.gov/pubmed/26696900 http://dx.doi.org/10.3389/fphys.2015.00366 |
Ejemplares similares
-
Predicting Essential Genes and Proteins Based on Machine Learning and Network Topological Features: A Comprehensive Review
por: Zhang, Xue, et al.
Publicado: (2016) -
Corrigendum: Predicting Essential Genes and Proteins Based on Machine Learning and Network Topological Features: A Comprehensive Review
por: Zhang, Xue, et al.
Publicado: (2016) -
A machine learning approach for genome-wide prediction of morbid and druggable human genes based on systems-level data
por: Costa, Pedro R, et al.
Publicado: (2010) -
Towards the prediction of essential genes by integration of network topology, cellular localization and biological process information
por: Acencio, Marcio L, et al.
Publicado: (2009) -
The Development of a Universal In Silico Predictor of Protein-Protein Interactions
por: Valente, Guilherme T., et al.
Publicado: (2013)