Cargando…

A Role for the Non-Canonical Wnt-β-Catenin and TGF-β Signaling Pathways in the Induction of Tolerance during the Establishment of a Salmonella enterica Serovar Enteritidis Persistent Cecal Infection in Chickens

Non-typhoidal Salmonella enterica induce an early pro-inflammatory response in chickens. However, the response is short-lived, asymptomatic of disease, resulting in a persistent colonization of the ceca, and fecal shedding of bacteria. The underlying mechanisms that control this persistent infection...

Descripción completa

Detalles Bibliográficos
Autores principales: Kogut, Michael H., Arsenault, Ryan J.
Formato: Online Artículo Texto
Lenguaje:English
Publicado: Frontiers Media S.A. 2015
Materias:
Acceso en línea:https://www.ncbi.nlm.nih.gov/pmc/articles/PMC4672200/
https://www.ncbi.nlm.nih.gov/pubmed/26664962
http://dx.doi.org/10.3389/fvets.2015.00033
_version_ 1782404525472088064
author Kogut, Michael H.
Arsenault, Ryan J.
author_facet Kogut, Michael H.
Arsenault, Ryan J.
author_sort Kogut, Michael H.
collection PubMed
description Non-typhoidal Salmonella enterica induce an early pro-inflammatory response in chickens. However, the response is short-lived, asymptomatic of disease, resulting in a persistent colonization of the ceca, and fecal shedding of bacteria. The underlying mechanisms that control this persistent infection of chickens by Salmonella are unknown. Recently, we found an expansion of the Treg population and subsequent increased in vitro immunosuppressive functions of the CD4(+)CD25(+) cells isolated from the ceca of the Salmonella-infected chickens by day 4 post-infection that increased steadily throughout the course of the 14 days of infection, whereas the number of CD4(+)CD25(+) cells in the non-infected controls remained steady throughout the study. CD4(+)CD25(+) cells from cecal tonsils of S. enteritidis-infected birds had greater expression of IL-10 mRNA content than the CD4(+)CD25(+) cells from the non-infected controls at all the time points studied. These results suggest the development of a tolerogenic immune response in the cecum of Salmonella-infected chickens may contribute to the persistance of Salmonella cecal colonization. Using a chicken-specific kinome peptide immune array, we have analyzed the signaling pathways altered during the establishment of this tolerogenic state. This analysis has revealed a role for the non-canonical Wnt signaling pathway in the cecum at 4 days post-infection. Infection induced the significant (p < 0.01) phosphorylation of the G-protein-coupled transmembrane protein, Frizzled 1 (FZD1), resulting in an influx of intracellular Ca(2+) and the phosphorylation of the Ca(2+)-dependent effector molecules calcium/calmodulin-dependent kinase II (CamKII), β-catenin, protein kinase C, and the activation of the transcription factor, NFAT. Nuclear translocation of NFAT resulted in a significant increase in the expression of the anti-inflammatory cytokines IL-10 and TGF-β. Increased expression of TGF-β4 mRNA activates the TGF-β signaling pathway that phosphorylates the receptor-activated Smads, Smad2 and Smad3. Combined with the results from our Treg studies, these studies describe kinome-based phenotypic changes in the cecum of chickens during Salmonella Enteritidis infection starting 4 days post-infection that leads to an anti-inflammatory, tolerogenic local environment, and results in the establishment of persistent intestinal colonization.
format Online
Article
Text
id pubmed-4672200
institution National Center for Biotechnology Information
language English
publishDate 2015
publisher Frontiers Media S.A.
record_format MEDLINE/PubMed
spelling pubmed-46722002015-12-10 A Role for the Non-Canonical Wnt-β-Catenin and TGF-β Signaling Pathways in the Induction of Tolerance during the Establishment of a Salmonella enterica Serovar Enteritidis Persistent Cecal Infection in Chickens Kogut, Michael H. Arsenault, Ryan J. Front Vet Sci Veterinary Science Non-typhoidal Salmonella enterica induce an early pro-inflammatory response in chickens. However, the response is short-lived, asymptomatic of disease, resulting in a persistent colonization of the ceca, and fecal shedding of bacteria. The underlying mechanisms that control this persistent infection of chickens by Salmonella are unknown. Recently, we found an expansion of the Treg population and subsequent increased in vitro immunosuppressive functions of the CD4(+)CD25(+) cells isolated from the ceca of the Salmonella-infected chickens by day 4 post-infection that increased steadily throughout the course of the 14 days of infection, whereas the number of CD4(+)CD25(+) cells in the non-infected controls remained steady throughout the study. CD4(+)CD25(+) cells from cecal tonsils of S. enteritidis-infected birds had greater expression of IL-10 mRNA content than the CD4(+)CD25(+) cells from the non-infected controls at all the time points studied. These results suggest the development of a tolerogenic immune response in the cecum of Salmonella-infected chickens may contribute to the persistance of Salmonella cecal colonization. Using a chicken-specific kinome peptide immune array, we have analyzed the signaling pathways altered during the establishment of this tolerogenic state. This analysis has revealed a role for the non-canonical Wnt signaling pathway in the cecum at 4 days post-infection. Infection induced the significant (p < 0.01) phosphorylation of the G-protein-coupled transmembrane protein, Frizzled 1 (FZD1), resulting in an influx of intracellular Ca(2+) and the phosphorylation of the Ca(2+)-dependent effector molecules calcium/calmodulin-dependent kinase II (CamKII), β-catenin, protein kinase C, and the activation of the transcription factor, NFAT. Nuclear translocation of NFAT resulted in a significant increase in the expression of the anti-inflammatory cytokines IL-10 and TGF-β. Increased expression of TGF-β4 mRNA activates the TGF-β signaling pathway that phosphorylates the receptor-activated Smads, Smad2 and Smad3. Combined with the results from our Treg studies, these studies describe kinome-based phenotypic changes in the cecum of chickens during Salmonella Enteritidis infection starting 4 days post-infection that leads to an anti-inflammatory, tolerogenic local environment, and results in the establishment of persistent intestinal colonization. Frontiers Media S.A. 2015-09-08 /pmc/articles/PMC4672200/ /pubmed/26664962 http://dx.doi.org/10.3389/fvets.2015.00033 Text en Copyright © 2015 Kogut and Arsenault. http://creativecommons.org/licenses/by/4.0/ This is an open-access article distributed under the terms of the Creative Commons Attribution License (CC BY). The use, distribution or reproduction in other forums is permitted, provided the original author(s) or licensor are credited and that the original publication in this journal is cited, in accordance with accepted academic practice. No use, distribution or reproduction is permitted which does not comply with these terms.
spellingShingle Veterinary Science
Kogut, Michael H.
Arsenault, Ryan J.
A Role for the Non-Canonical Wnt-β-Catenin and TGF-β Signaling Pathways in the Induction of Tolerance during the Establishment of a Salmonella enterica Serovar Enteritidis Persistent Cecal Infection in Chickens
title A Role for the Non-Canonical Wnt-β-Catenin and TGF-β Signaling Pathways in the Induction of Tolerance during the Establishment of a Salmonella enterica Serovar Enteritidis Persistent Cecal Infection in Chickens
title_full A Role for the Non-Canonical Wnt-β-Catenin and TGF-β Signaling Pathways in the Induction of Tolerance during the Establishment of a Salmonella enterica Serovar Enteritidis Persistent Cecal Infection in Chickens
title_fullStr A Role for the Non-Canonical Wnt-β-Catenin and TGF-β Signaling Pathways in the Induction of Tolerance during the Establishment of a Salmonella enterica Serovar Enteritidis Persistent Cecal Infection in Chickens
title_full_unstemmed A Role for the Non-Canonical Wnt-β-Catenin and TGF-β Signaling Pathways in the Induction of Tolerance during the Establishment of a Salmonella enterica Serovar Enteritidis Persistent Cecal Infection in Chickens
title_short A Role for the Non-Canonical Wnt-β-Catenin and TGF-β Signaling Pathways in the Induction of Tolerance during the Establishment of a Salmonella enterica Serovar Enteritidis Persistent Cecal Infection in Chickens
title_sort role for the non-canonical wnt-β-catenin and tgf-β signaling pathways in the induction of tolerance during the establishment of a salmonella enterica serovar enteritidis persistent cecal infection in chickens
topic Veterinary Science
url https://www.ncbi.nlm.nih.gov/pmc/articles/PMC4672200/
https://www.ncbi.nlm.nih.gov/pubmed/26664962
http://dx.doi.org/10.3389/fvets.2015.00033
work_keys_str_mv AT kogutmichaelh aroleforthenoncanonicalwntbcateninandtgfbsignalingpathwaysintheinductionoftoleranceduringtheestablishmentofasalmonellaentericaserovarenteritidispersistentcecalinfectioninchickens
AT arsenaultryanj aroleforthenoncanonicalwntbcateninandtgfbsignalingpathwaysintheinductionoftoleranceduringtheestablishmentofasalmonellaentericaserovarenteritidispersistentcecalinfectioninchickens
AT kogutmichaelh roleforthenoncanonicalwntbcateninandtgfbsignalingpathwaysintheinductionoftoleranceduringtheestablishmentofasalmonellaentericaserovarenteritidispersistentcecalinfectioninchickens
AT arsenaultryanj roleforthenoncanonicalwntbcateninandtgfbsignalingpathwaysintheinductionoftoleranceduringtheestablishmentofasalmonellaentericaserovarenteritidispersistentcecalinfectioninchickens