Cargando…
Comparative transcriptomic analysis of silkworm(Bmovo-1) and wild type silkworm ovary
The detailed molecular mechanism of Bmovo-1 regulation of ovary size is unclear. To uncover the mechanism of Bmovo-1 regulation of ovarian development and oogenesis using RNA-Seq, we compared the transcriptomes of wild type (WT) and Bmovo-1-overexpressing silkworm (silkworm(+Bmovo-1)) ovaries. Using...
Autores principales: | , , , , , , , , , |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
Nature Publishing Group
2015
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC4672304/ https://www.ncbi.nlm.nih.gov/pubmed/26643037 http://dx.doi.org/10.1038/srep17867 |
Sumario: | The detailed molecular mechanism of Bmovo-1 regulation of ovary size is unclear. To uncover the mechanism of Bmovo-1 regulation of ovarian development and oogenesis using RNA-Seq, we compared the transcriptomes of wild type (WT) and Bmovo-1-overexpressing silkworm (silkworm(+Bmovo-1)) ovaries. Using a pair-end Illumina Solexa sequencing strategy, 5,296,942 total reads were obtained from silkworm(+Bmovo-1) ovaries and 6,306,078 from WT ovaries. The average read length was about 100 bp. Clean read ratios were 98.79% for silkworm(+Bmovo-1) and 98.87% for WT silkworm ovaries. Comparative transcriptome analysis showed 123 upregulated and 111 downregulated genes in silkworm(+Bmovo-1) ovaries. These differentially expressed genes were enriched in the extracellular and extracellular spaces and involved in metabolism, genetic information processing, environmental information processing, cellular processes and organismal systems. Bmovo-1 overexpression in silkworm ovaries might promote anabolism for ovarian development and oogenesis and oocyte proliferation and transport of nutrients to ovaries by altering nutrient partitioning, which would support ovary development. Excessive consumption of nutrients for ovary development alters nutrient partitioning and deters silk protein synthesis. |
---|