Cargando…

De novo transcriptome reconstruction and annotation of the Egyptian rousette bat

BACKGROUND: The Egyptian Rousette bat (Rousettus aegyptiacus), a common fruit bat species found throughout Africa and the Middle East, was recently identified as a natural reservoir host of Marburg virus. With Ebola virus, Marburg virus is a member of the family Filoviridae that causes severe hemorr...

Descripción completa

Detalles Bibliográficos
Autores principales: Lee, Albert K., Kulcsar, Kirsten A., Elliott, Oliver, Khiabanian, Hossein, Nagle, Elyse R., Jones, Megan E.B., Amman, Brian R., Sanchez-Lockhart, Mariano, Towner, Jonathan S., Palacios, Gustavo, Rabadan, Raul
Formato: Online Artículo Texto
Lenguaje:English
Publicado: BioMed Central 2015
Materias:
Acceso en línea:https://www.ncbi.nlm.nih.gov/pmc/articles/PMC4672546/
https://www.ncbi.nlm.nih.gov/pubmed/26643810
http://dx.doi.org/10.1186/s12864-015-2124-x
Descripción
Sumario:BACKGROUND: The Egyptian Rousette bat (Rousettus aegyptiacus), a common fruit bat species found throughout Africa and the Middle East, was recently identified as a natural reservoir host of Marburg virus. With Ebola virus, Marburg virus is a member of the family Filoviridae that causes severe hemorrhagic fever disease in humans and nonhuman primates, but results in little to no pathological consequences in bats. Understanding host-pathogen interactions within reservoir host species and how it differs from hosts that experience severe disease is an important aspect of evaluating viral pathogenesis and developing novel therapeutics and methods of prevention. RESULTS: Progress in studying bat reservoir host responses to virus infection is hampered by the lack of host-specific reagents required for immunological studies. In order to establish a basis for the design of reagents, we sequenced, assembled, and annotated the R. aegyptiacus transcriptome. We performed de novo transcriptome assembly using deep RNA sequencing data from 11 distinct tissues from one male and one female bat. We observed high similarity between this transcriptome and those available from other bat species. Gene expression analysis demonstrated clustering of expression profiles by tissue, where we also identified enrichment of tissue-specific gene ontology terms. In addition, we identified and experimentally validated the expression of novel coding transcripts that may be specific to this species. CONCLUSION: We comprehensively characterized the R. aegyptiacus transcriptome de novo. This transcriptome will be an important resource for understanding bat immunology, physiology, disease pathogenesis, and virus transmission. ELECTRONIC SUPPLEMENTARY MATERIAL: The online version of this article (doi:10.1186/s12864-015-2124-x) contains supplementary material, which is available to authorized users.