Cargando…
Bordetella pertussis Isolates from Argentinean Whooping Cough Patients Display Enhanced Biofilm Formation Capacity Compared to Tohama I Reference Strain
Pertussis is a highly contagious disease mainly caused by Bordetella pertussis. Despite the massive use of vaccines, since the 1950s the disease has become re-emergent in 2000 with a shift in incidence from infants to adolescents and adults. Clearly, the efficacy of current cellular or acellular vac...
Autores principales: | , , , , , , , , |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
Frontiers Media S.A.
2015
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC4672677/ https://www.ncbi.nlm.nih.gov/pubmed/26696973 http://dx.doi.org/10.3389/fmicb.2015.01352 |
_version_ | 1782404615331905536 |
---|---|
author | Arnal, Laura Grunert, Tom Cattelan, Natalia de Gouw, Daan Villalba, María I. Serra, Diego O. Mooi, Frits R. Ehling-Schulz, Monika Yantorno, Osvaldo M. |
author_facet | Arnal, Laura Grunert, Tom Cattelan, Natalia de Gouw, Daan Villalba, María I. Serra, Diego O. Mooi, Frits R. Ehling-Schulz, Monika Yantorno, Osvaldo M. |
author_sort | Arnal, Laura |
collection | PubMed |
description | Pertussis is a highly contagious disease mainly caused by Bordetella pertussis. Despite the massive use of vaccines, since the 1950s the disease has become re-emergent in 2000 with a shift in incidence from infants to adolescents and adults. Clearly, the efficacy of current cellular or acellular vaccines, formulated from bacteria grown in stirred bioreactors is limited, presenting a challenge for future vaccine development. For gaining insights into the role of B. pertussis biofilm development for host colonization and persistence within the host, we examined the biofilm forming capacity of eight argentinean clinical isolates recovered from 2001 to 2007. All clinical isolates showed an enhanced potential for biofilm formation compared to the reference strain Tohama I. We further selected the clinical isolate B. pertussis 2723, exhibiting the highest biofilm biomass production, for quantitative proteomic profiling by means of two-dimensional fluorescence difference gel electrophoresis (2D-DIGE) coupled with mass spectrometry, which was accompanied by targeted transcriptional analysis. Results revealed an elevated expression of several virulence factors, including adhesins involved in biofilm development. In addition, we observed a higher expression of energy metabolism enzymes in the clinical isolate compared to the Tohama I strain. Furthermore, all clinical isolates carried a polymorphism in the bvgS gene. This mutation was associated to an increased sensitivity to modulation and a faster rate of adhesion to abiotic surfaces. Thus, the phenotypic biofilm characteristics shown by the clinical isolates might represent an important, hitherto underestimated, adaptive strategy for host colonization and long time persistence within the host. |
format | Online Article Text |
id | pubmed-4672677 |
institution | National Center for Biotechnology Information |
language | English |
publishDate | 2015 |
publisher | Frontiers Media S.A. |
record_format | MEDLINE/PubMed |
spelling | pubmed-46726772015-12-22 Bordetella pertussis Isolates from Argentinean Whooping Cough Patients Display Enhanced Biofilm Formation Capacity Compared to Tohama I Reference Strain Arnal, Laura Grunert, Tom Cattelan, Natalia de Gouw, Daan Villalba, María I. Serra, Diego O. Mooi, Frits R. Ehling-Schulz, Monika Yantorno, Osvaldo M. Front Microbiol Microbiology Pertussis is a highly contagious disease mainly caused by Bordetella pertussis. Despite the massive use of vaccines, since the 1950s the disease has become re-emergent in 2000 with a shift in incidence from infants to adolescents and adults. Clearly, the efficacy of current cellular or acellular vaccines, formulated from bacteria grown in stirred bioreactors is limited, presenting a challenge for future vaccine development. For gaining insights into the role of B. pertussis biofilm development for host colonization and persistence within the host, we examined the biofilm forming capacity of eight argentinean clinical isolates recovered from 2001 to 2007. All clinical isolates showed an enhanced potential for biofilm formation compared to the reference strain Tohama I. We further selected the clinical isolate B. pertussis 2723, exhibiting the highest biofilm biomass production, for quantitative proteomic profiling by means of two-dimensional fluorescence difference gel electrophoresis (2D-DIGE) coupled with mass spectrometry, which was accompanied by targeted transcriptional analysis. Results revealed an elevated expression of several virulence factors, including adhesins involved in biofilm development. In addition, we observed a higher expression of energy metabolism enzymes in the clinical isolate compared to the Tohama I strain. Furthermore, all clinical isolates carried a polymorphism in the bvgS gene. This mutation was associated to an increased sensitivity to modulation and a faster rate of adhesion to abiotic surfaces. Thus, the phenotypic biofilm characteristics shown by the clinical isolates might represent an important, hitherto underestimated, adaptive strategy for host colonization and long time persistence within the host. Frontiers Media S.A. 2015-12-08 /pmc/articles/PMC4672677/ /pubmed/26696973 http://dx.doi.org/10.3389/fmicb.2015.01352 Text en Copyright © 2015 Arnal, Grunert, Cattelan, de Gouw, Villalba, Serra, Mooi, Ehling-Schulz and Yantorno. http://creativecommons.org/licenses/by/4.0/ This is an open-access article distributed under the terms of the Creative Commons Attribution License (CC BY). The use, distribution or reproduction in other forums is permitted, provided the original author(s) or licensor are credited and that the original publication in this journal is cited, in accordance with accepted academic practice. No use, distribution or reproduction is permitted which does not comply with these terms. |
spellingShingle | Microbiology Arnal, Laura Grunert, Tom Cattelan, Natalia de Gouw, Daan Villalba, María I. Serra, Diego O. Mooi, Frits R. Ehling-Schulz, Monika Yantorno, Osvaldo M. Bordetella pertussis Isolates from Argentinean Whooping Cough Patients Display Enhanced Biofilm Formation Capacity Compared to Tohama I Reference Strain |
title | Bordetella pertussis Isolates from Argentinean Whooping Cough Patients Display Enhanced Biofilm Formation Capacity Compared to Tohama I Reference Strain |
title_full | Bordetella pertussis Isolates from Argentinean Whooping Cough Patients Display Enhanced Biofilm Formation Capacity Compared to Tohama I Reference Strain |
title_fullStr | Bordetella pertussis Isolates from Argentinean Whooping Cough Patients Display Enhanced Biofilm Formation Capacity Compared to Tohama I Reference Strain |
title_full_unstemmed | Bordetella pertussis Isolates from Argentinean Whooping Cough Patients Display Enhanced Biofilm Formation Capacity Compared to Tohama I Reference Strain |
title_short | Bordetella pertussis Isolates from Argentinean Whooping Cough Patients Display Enhanced Biofilm Formation Capacity Compared to Tohama I Reference Strain |
title_sort | bordetella pertussis isolates from argentinean whooping cough patients display enhanced biofilm formation capacity compared to tohama i reference strain |
topic | Microbiology |
url | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC4672677/ https://www.ncbi.nlm.nih.gov/pubmed/26696973 http://dx.doi.org/10.3389/fmicb.2015.01352 |
work_keys_str_mv | AT arnallaura bordetellapertussisisolatesfromargentineanwhoopingcoughpatientsdisplayenhancedbiofilmformationcapacitycomparedtotohamaireferencestrain AT grunerttom bordetellapertussisisolatesfromargentineanwhoopingcoughpatientsdisplayenhancedbiofilmformationcapacitycomparedtotohamaireferencestrain AT cattelannatalia bordetellapertussisisolatesfromargentineanwhoopingcoughpatientsdisplayenhancedbiofilmformationcapacitycomparedtotohamaireferencestrain AT degouwdaan bordetellapertussisisolatesfromargentineanwhoopingcoughpatientsdisplayenhancedbiofilmformationcapacitycomparedtotohamaireferencestrain AT villalbamariai bordetellapertussisisolatesfromargentineanwhoopingcoughpatientsdisplayenhancedbiofilmformationcapacitycomparedtotohamaireferencestrain AT serradiegoo bordetellapertussisisolatesfromargentineanwhoopingcoughpatientsdisplayenhancedbiofilmformationcapacitycomparedtotohamaireferencestrain AT mooifritsr bordetellapertussisisolatesfromargentineanwhoopingcoughpatientsdisplayenhancedbiofilmformationcapacitycomparedtotohamaireferencestrain AT ehlingschulzmonika bordetellapertussisisolatesfromargentineanwhoopingcoughpatientsdisplayenhancedbiofilmformationcapacitycomparedtotohamaireferencestrain AT yantornoosvaldom bordetellapertussisisolatesfromargentineanwhoopingcoughpatientsdisplayenhancedbiofilmformationcapacitycomparedtotohamaireferencestrain |