Cargando…
Comprehensible Predictive Modeling Using Regularized Logistic Regression and Comorbidity Based Features
Different studies have demonstrated the importance of comorbidities to better understand the origin and evolution of medical complications. This study focuses on improvement of the predictive model interpretability based on simple logical features representing comorbidities. We use group lasso based...
Autores principales: | Stiglic, Gregor, Povalej Brzan, Petra, Fijacko, Nino, Wang, Fei, Delibasic, Boris, Kalousis, Alexandros, Obradovic, Zoran |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
Public Library of Science
2015
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC4672891/ https://www.ncbi.nlm.nih.gov/pubmed/26645087 http://dx.doi.org/10.1371/journal.pone.0144439 |
Ejemplares similares
-
Maximizing Interpretability and Cost-Effectiveness of Surgical Site Infection (SSI) Predictive Models Using Feature-Specific Regularized Logistic Regression on Preoperative Temporal Data
por: Kocbek, Primoz, et al.
Publicado: (2019) -
Contribution of temporal data to predictive performance in 30-day readmission of morbidly obese patients
por: Povalej Brzan, Petra, et al.
Publicado: (2017) -
Extracting New Temporal Features to Improve the Interpretability of Undiagnosed Type 2 Diabetes Mellitus Prediction Models
por: Kocbek, Simon, et al.
Publicado: (2022) -
Supporting Regularized Logistic Regression Privately and Efficiently
por: Li, Wenfa, et al.
Publicado: (2016) -
Perception of the Online Learning Environment of Nursing Students in Slovenia: Validation of the DREEM Questionnaire
por: Gosak, Lucija, et al.
Publicado: (2021)