Cargando…

Invention of Hollow Zirconium Tungesto-Vanadate at Nanotube Morphological Structure for Radionuclides and Heavy Metal Pollutants Decontamination from Aqueous Solutions

Zirconium tungesto-vanadate cation exchange material was successfully architectured at open ended nanotubes morphological structure in the presence of polyvinyl alcohol as a stabilizing agent using microwave route. The ion exchange capacity (IEC) of the material was recorded as 4.8 meq/g of about 64...

Descripción completa

Detalles Bibliográficos
Autores principales: Elkady, M. F., Hassan, H. Shokry
Formato: Online Artículo Texto
Lenguaje:English
Publicado: Springer US 2015
Materias:
Acceso en línea:https://www.ncbi.nlm.nih.gov/pmc/articles/PMC4673076/
https://www.ncbi.nlm.nih.gov/pubmed/26646687
http://dx.doi.org/10.1186/s11671-015-1180-0
Descripción
Sumario:Zirconium tungesto-vanadate cation exchange material was successfully architectured at open ended nanotubes morphological structure in the presence of polyvinyl alcohol as a stabilizing agent using microwave route. The ion exchange capacity (IEC) of the material was recorded as 4.8 meq/g of about 640 m(2)/g for a specific surface area. The x-ray diffraction pattern of the material implies its crystallinity. Both scanning and transmission electron microscopes identified the average aspect ratio of the architectured nanotubes as 6.5 and its hollow structure. The material posed 96.4 % cadmium ion decontamination within 90 min compared with 84 % strontium decontamination at the same time.