Cargando…

Lower expression of GATA3 and T-bet correlates with downregulated IL-10 in severe falciparum malaria

Interleukin (IL)-10, a non-redundant anti-inflammatory cytokine is produced by different cells and its production involves activation of cell-specific transcriptional regulatory machinery in response to specific pathogen. We have previously demonstrated downregulated levels of IL-10 in severe falcip...

Descripción completa

Detalles Bibliográficos
Autores principales: Mahanta, Anusree, Baruah, Shashi
Formato: Online Artículo Texto
Lenguaje:English
Publicado: Nature Publishing Group 2015
Materias:
Acceso en línea:https://www.ncbi.nlm.nih.gov/pmc/articles/PMC4673438/
https://www.ncbi.nlm.nih.gov/pubmed/26682056
http://dx.doi.org/10.1038/cti.2015.30
Descripción
Sumario:Interleukin (IL)-10, a non-redundant anti-inflammatory cytokine is produced by different cells and its production involves activation of cell-specific transcriptional regulatory machinery in response to specific pathogen. We have previously demonstrated downregulated levels of IL-10 in severe falciparum malaria. The present study investigated transcriptional regulation of IL-10 in severe malaria. Comparative expression analysis of cell-specific signalling proteins and transcription factors for IL-10 production during the stage of active infection and with resolution of parasitaemia was performed. Interestingly, T-bet and GATA3, the Th1 and Th2 transcription factors, respectively, were downregulated in severe malaria with fold change values of 0.59 and 0.86. Increase in the levels of both the factors with resolution of parasitaemia implicated a role for parasite in depressed levels of these factors. Further support for probable parasite manipulation of GATA3 was obtained from negative correlation of GATA3 with parasitaemia. In addition, a role for interferon-α in suppressing IL-10 transcription was evident from its negative correlation with GATA3 and IL-10 levels. In summary, IL-10 transcription in Th1 and Th2 is defective and appears to have major contribution to low levels in severe malaria.