Cargando…
Identifying early-warning signals of critical transitions with strong noise by dynamical network markers
Identifying early-warning signals of a critical transition for a complex system is difficult, especially when the target system is constantly perturbed by big noise, which makes the traditional methods fail due to the strong fluctuations of the observed data. In this work, we show that the critical...
Autores principales: | Liu, Rui, Chen, Pei, Aihara, Kazuyuki, Chen, Luonan |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
Nature Publishing Group
2015
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC4673532/ https://www.ncbi.nlm.nih.gov/pubmed/26647650 http://dx.doi.org/10.1038/srep17501 |
Ejemplares similares
-
Identifying critical differentiation state of MCF-7 cells for breast cancer by dynamical network biomarkers
por: Chen, Pei, et al.
Publicado: (2015) -
Detecting early-warning signals for sudden deterioration of complex diseases by dynamical network biomarkers
por: Chen, Luonan, et al.
Publicado: (2012) -
Identifying critical transitions and their leading biomolecular networks in complex diseases
por: Liu, Rui, et al.
Publicado: (2012) -
Detecting early‐warning signals of influenza outbreak based on dynamic network marker
por: Chen, Pei, et al.
Publicado: (2018) -
Quantifying critical states of complex diseases using single-sample dynamic network biomarkers
por: Liu, Xiaoping, et al.
Publicado: (2017)