Cargando…

EU marker polycyclic aromatic hydrocarbons in food supplements: analytical approach and occurrence

Several food supplements comprising botanical, oil and bee products collected from retail markets in different countries were tested for the occurrence of 4 EU marker Polycyclic aromatic hydrocarbons (PAHs; benz[a]anthracene, chrysene, benzo[b]fluoranthene and benzo[a]pyrene). A robust GC/MS-based s...

Descripción completa

Detalles Bibliográficos
Autores principales: Zelinkova, Zuzana, Wenzl, Thomas
Formato: Online Artículo Texto
Lenguaje:English
Publicado: Taylor & Francis 2015
Materias:
Acceso en línea:https://www.ncbi.nlm.nih.gov/pmc/articles/PMC4673576/
https://www.ncbi.nlm.nih.gov/pubmed/26467752
http://dx.doi.org/10.1080/19440049.2015.1087059
Descripción
Sumario:Several food supplements comprising botanical, oil and bee products collected from retail markets in different countries were tested for the occurrence of 4 EU marker Polycyclic aromatic hydrocarbons (PAHs; benz[a]anthracene, chrysene, benzo[b]fluoranthene and benzo[a]pyrene). A robust GC/MS-based stable-isotope dilution method was used taking into account the differences in the type of matrices. The accuracy of the results was assessed by implementing several quality control tools. Sixty-eight samples of 94 analysed products exceeded the level of 0.5 μg/kg for the sum of the four EU marker PAHs (ΣPAH4). Benzo[a]pyrene exceeded the limit of quantification in 49 samples. The PAH with the highest abundance in all products was chrysene. On average, propolis extracts and other bee products showed relatively high levels of ΣPAH4 (mean 188.2 μg/kg), whereas the contamination levels of fish oil supplements were very low or mostly undetectable. Considerably high ΣPAH4 amounts found in some samples could remarkably increase the daily exposure of consumers to PAHs, demonstrating the need for continuous monitoring of ΣPAH4 in food supplements.