Cargando…
Complex Evolutionary and Genetic Patterns Characterize the Loss of Scleral Ossification in the Blind Cavefish Astyanax mexicanus
The sclera is the tough outer covering of the eye that provides structural support and helps maintain intraocular pressure. In some fishes, reptiles, and birds, the sclera is reinforced with an additional ring of hyaline cartilage or bone that forms from scleral ossicles. Currently, the evolutionary...
Autores principales: | , , , , , |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
Public Library of Science
2015
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC4674125/ https://www.ncbi.nlm.nih.gov/pubmed/26649887 http://dx.doi.org/10.1371/journal.pone.0142208 |
_version_ | 1782404863466930176 |
---|---|
author | O’Quin, Kelly E. Doshi, Pooja Lyon, Anastasia Hoenemeyer, Emma Yoshizawa, Masato Jeffery, William R. |
author_facet | O’Quin, Kelly E. Doshi, Pooja Lyon, Anastasia Hoenemeyer, Emma Yoshizawa, Masato Jeffery, William R. |
author_sort | O’Quin, Kelly E. |
collection | PubMed |
description | The sclera is the tough outer covering of the eye that provides structural support and helps maintain intraocular pressure. In some fishes, reptiles, and birds, the sclera is reinforced with an additional ring of hyaline cartilage or bone that forms from scleral ossicles. Currently, the evolutionary and genetic basis of scleral ossification is poorly understood, especially in teleost fishes. We assessed scleral ossification among several groups of the Mexican tetra (Astyanax mexicanus), which exhibit both an eyed and eyeless morph. Although eyed Astyanax surface fish have bony sclera similar to other teleosts, the ossicles of blind Astyanax cavefish generally do not form. We first sampled cavefish from multiple independent populations and used ancestral character state reconstructions to determine how many times scleral ossification has been lost. We then confirmed these results by assessing complementation of scleral ossification among the F(1) hybrid progeny of two cavefish populations. Finally, we quantified the number of scleral ossicles present among the F(2) hybrid progeny of a cross between surface fish and cavefish, and used this information to identify quantitative trait loci (QTL) responsible for this trait. Our results indicate that the loss of scleral ossification is common–but not ubiquitous–among Astyanax cavefish, and that this trait has been convergently lost at least three times. The presence of wild-type, ossified sclera among the F(1) hybrid progeny of a cross between different cavefish populations confirms the convergent evolution of this trait. However, a strongly skewed distribution of scleral ossicles found among surface fish x cavefish F(2) hybrids suggests that scleral ossification is a threshold trait with a complex genetic basis. Quantitative genetic mapping identified a single QTL for scleral ossification on Astyanax linkage group 1. We estimate that the threshold for this trait is likely determined by at least three genetic factors which may control the severity and onset of lens degeneration in cavefishes. We conclude that complex evolutionary and genetic patterns underlie the loss of scleral ossification in Astyanax cavefish. |
format | Online Article Text |
id | pubmed-4674125 |
institution | National Center for Biotechnology Information |
language | English |
publishDate | 2015 |
publisher | Public Library of Science |
record_format | MEDLINE/PubMed |
spelling | pubmed-46741252015-12-23 Complex Evolutionary and Genetic Patterns Characterize the Loss of Scleral Ossification in the Blind Cavefish Astyanax mexicanus O’Quin, Kelly E. Doshi, Pooja Lyon, Anastasia Hoenemeyer, Emma Yoshizawa, Masato Jeffery, William R. PLoS One Research Article The sclera is the tough outer covering of the eye that provides structural support and helps maintain intraocular pressure. In some fishes, reptiles, and birds, the sclera is reinforced with an additional ring of hyaline cartilage or bone that forms from scleral ossicles. Currently, the evolutionary and genetic basis of scleral ossification is poorly understood, especially in teleost fishes. We assessed scleral ossification among several groups of the Mexican tetra (Astyanax mexicanus), which exhibit both an eyed and eyeless morph. Although eyed Astyanax surface fish have bony sclera similar to other teleosts, the ossicles of blind Astyanax cavefish generally do not form. We first sampled cavefish from multiple independent populations and used ancestral character state reconstructions to determine how many times scleral ossification has been lost. We then confirmed these results by assessing complementation of scleral ossification among the F(1) hybrid progeny of two cavefish populations. Finally, we quantified the number of scleral ossicles present among the F(2) hybrid progeny of a cross between surface fish and cavefish, and used this information to identify quantitative trait loci (QTL) responsible for this trait. Our results indicate that the loss of scleral ossification is common–but not ubiquitous–among Astyanax cavefish, and that this trait has been convergently lost at least three times. The presence of wild-type, ossified sclera among the F(1) hybrid progeny of a cross between different cavefish populations confirms the convergent evolution of this trait. However, a strongly skewed distribution of scleral ossicles found among surface fish x cavefish F(2) hybrids suggests that scleral ossification is a threshold trait with a complex genetic basis. Quantitative genetic mapping identified a single QTL for scleral ossification on Astyanax linkage group 1. We estimate that the threshold for this trait is likely determined by at least three genetic factors which may control the severity and onset of lens degeneration in cavefishes. We conclude that complex evolutionary and genetic patterns underlie the loss of scleral ossification in Astyanax cavefish. Public Library of Science 2015-12-09 /pmc/articles/PMC4674125/ /pubmed/26649887 http://dx.doi.org/10.1371/journal.pone.0142208 Text en © 2015 O’Quin et al http://creativecommons.org/licenses/by/4.0/ This is an open-access article distributed under the terms of the Creative Commons Attribution License, which permits unrestricted use, distribution, and reproduction in any medium, provided the original author and source are properly credited. |
spellingShingle | Research Article O’Quin, Kelly E. Doshi, Pooja Lyon, Anastasia Hoenemeyer, Emma Yoshizawa, Masato Jeffery, William R. Complex Evolutionary and Genetic Patterns Characterize the Loss of Scleral Ossification in the Blind Cavefish Astyanax mexicanus |
title | Complex Evolutionary and Genetic Patterns Characterize the Loss of Scleral Ossification in the Blind Cavefish Astyanax mexicanus
|
title_full | Complex Evolutionary and Genetic Patterns Characterize the Loss of Scleral Ossification in the Blind Cavefish Astyanax mexicanus
|
title_fullStr | Complex Evolutionary and Genetic Patterns Characterize the Loss of Scleral Ossification in the Blind Cavefish Astyanax mexicanus
|
title_full_unstemmed | Complex Evolutionary and Genetic Patterns Characterize the Loss of Scleral Ossification in the Blind Cavefish Astyanax mexicanus
|
title_short | Complex Evolutionary and Genetic Patterns Characterize the Loss of Scleral Ossification in the Blind Cavefish Astyanax mexicanus
|
title_sort | complex evolutionary and genetic patterns characterize the loss of scleral ossification in the blind cavefish astyanax mexicanus |
topic | Research Article |
url | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC4674125/ https://www.ncbi.nlm.nih.gov/pubmed/26649887 http://dx.doi.org/10.1371/journal.pone.0142208 |
work_keys_str_mv | AT oquinkellye complexevolutionaryandgeneticpatternscharacterizethelossofscleralossificationintheblindcavefishastyanaxmexicanus AT doshipooja complexevolutionaryandgeneticpatternscharacterizethelossofscleralossificationintheblindcavefishastyanaxmexicanus AT lyonanastasia complexevolutionaryandgeneticpatternscharacterizethelossofscleralossificationintheblindcavefishastyanaxmexicanus AT hoenemeyeremma complexevolutionaryandgeneticpatternscharacterizethelossofscleralossificationintheblindcavefishastyanaxmexicanus AT yoshizawamasato complexevolutionaryandgeneticpatternscharacterizethelossofscleralossificationintheblindcavefishastyanaxmexicanus AT jefferywilliamr complexevolutionaryandgeneticpatternscharacterizethelossofscleralossificationintheblindcavefishastyanaxmexicanus |