Cargando…
The TAM receptor Mertk protects against neuroinvasive viral infection by maintaining blood-brain barrier integrity
The TAM receptors Tyro3, Axl, and Mertk are receptor tyrosine kinases that dampen host innate immune responses following engagement with their ligands, Gas6 and Protein S, which recognize phosphatidylserine on apoptotic cells. In a form of apoptotic mimicry, many enveloped viruses display phosphatid...
Autores principales: | , , , , , , , , , |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
2015
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC4674389/ https://www.ncbi.nlm.nih.gov/pubmed/26523970 http://dx.doi.org/10.1038/nm.3974 |
Sumario: | The TAM receptors Tyro3, Axl, and Mertk are receptor tyrosine kinases that dampen host innate immune responses following engagement with their ligands, Gas6 and Protein S, which recognize phosphatidylserine on apoptotic cells. In a form of apoptotic mimicry, many enveloped viruses display phosphatidylserine on the outer leaflet of their membranes, enabling TAM receptor activation and down-regulation of antiviral responses. Accordingly, we hypothesized that a deficiency of TAM receptors would enhance antiviral responses and protect against viral infection. Unexpectedly, mice lacking Mertk and/or Axl but not Tyro3 exhibited greater vulnerability to infection with neuroinvasive West Nile and La Crosse viruses. This phenotype was associated with increased blood-brain barrier permeability, which enhanced virus entry into and infection of the brain. Activation of Mertk synergized with IFN-β to tighten cell junctions and prevent virus transit across brain microvascular endothelial cells. Because TAM receptors restrict pathogenesis of neuroinvasive viruses, these findings have implications for TAM antagonists that are currently in clinical development. |
---|