Cargando…

Switchable directional scattering of electromagnetic radiation with subwavelength asymmetric silicon dimers

High refractive index dielectric nanoparticles show high promise as a complementary nanophotonics platform due to compared with plasmonic nanostructures low absorption losses and the co-existence of magnetic and electric resonances. Here we explore their use as resonantly enhanced directional scatte...

Descripción completa

Detalles Bibliográficos
Autores principales: Albella, Pablo, Shibanuma, Toshihiko, Maier, Stefan A.
Formato: Online Artículo Texto
Lenguaje:English
Publicado: Nature Publishing Group 2015
Materias:
Acceso en línea:https://www.ncbi.nlm.nih.gov/pmc/articles/PMC4674758/
https://www.ncbi.nlm.nih.gov/pubmed/26656864
http://dx.doi.org/10.1038/srep18322
Descripción
Sumario:High refractive index dielectric nanoparticles show high promise as a complementary nanophotonics platform due to compared with plasmonic nanostructures low absorption losses and the co-existence of magnetic and electric resonances. Here we explore their use as resonantly enhanced directional scatterers. We theoretically demonstrate that an asymmetric dimer of silicon nanoparticles shows tuneable directional scattering depending on the frequency of excitation. This is due to the interference between electric and magnetic dipoles excited in each nanoparticle, enabling directional control of the scattered light. Interestingly, this control can be achieved regardless of the polarization direction with respect to the dimer axis; however, difference in the polarization can shift the wavelengths at which the directional scattering is achieved. We also explore the application of such an asymmetric nanoantenna as a tuneable routing element in a nanometer scale, suggesting applications in optical nanocircuitry.