Cargando…
Polymeric Micelles as Carriers for Nerve-Highlighting Fluorescent Probe Delivery
[Image: see text] Nerve damage during surgery is a common morbidity experienced by patients that leaves them with chronic pain and/or loss of function. Currently, no clinically approved imaging technique exists to enhance nerve visualization in the operating room. Fluorescence image-guided surgery h...
Autores principales: | , , , , , |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
American
Chemical
Society
2015
|
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC4674818/ https://www.ncbi.nlm.nih.gov/pubmed/26485440 http://dx.doi.org/10.1021/acs.molpharmaceut.5b00582 |
_version_ | 1782404954599718912 |
---|---|
author | Hackman, Kayla M. Doddapaneni, Bhuvana Shyam Barth, Connor W. Wierzbicki, Igor H. Alani, Adam W. G. Gibbs, Summer L. |
author_facet | Hackman, Kayla M. Doddapaneni, Bhuvana Shyam Barth, Connor W. Wierzbicki, Igor H. Alani, Adam W. G. Gibbs, Summer L. |
author_sort | Hackman, Kayla M. |
collection | PubMed |
description | [Image: see text] Nerve damage during surgery is a common morbidity experienced by patients that leaves them with chronic pain and/or loss of function. Currently, no clinically approved imaging technique exists to enhance nerve visualization in the operating room. Fluorescence image-guided surgery has gained in popularity and clinical acceptance over the past decade with a handful of imaging systems approved for clinical use. However, contrast agent development to complement these fluorescence-imaging systems has lagged behind with all currently approved fluorescent agents providing untargeted blood pool information. Nerve-specific fluorophores are known, however translations of these agents to the clinic has been complicated by their lipophilic nature, which necessitates specialized formulation strategies for successful systemic administration. To date the known nerve-specific fluorophores have only been demonstrated preclinically due to the necessity of a dimethyl sulfoxide containing formulation for solubilization. In the current study, a polymeric micellar (PM) formulation strategy was developed for a representative nerve-specific fluorophore from the distyrylbenzene family, BMB. The PM formulation strategy was able to solubilize BMB and demonstrated improved nerve-specific accumulation and fluorescence intensity when the same fluorophore dose was administered to mice utilizing the previous formulation strategy. The success of the PM formulation strategy will be important for moving toward clinical translation of these novel nerve-specific probes as it is nontoxic and biodegradable and has the potential to decrease the necessary dose for imaging while also improving the safety profile. |
format | Online Article Text |
id | pubmed-4674818 |
institution | National Center for Biotechnology Information |
language | English |
publishDate | 2015 |
publisher | American
Chemical
Society |
record_format | MEDLINE/PubMed |
spelling | pubmed-46748182015-12-15 Polymeric Micelles as Carriers for Nerve-Highlighting Fluorescent Probe Delivery Hackman, Kayla M. Doddapaneni, Bhuvana Shyam Barth, Connor W. Wierzbicki, Igor H. Alani, Adam W. G. Gibbs, Summer L. Mol Pharm [Image: see text] Nerve damage during surgery is a common morbidity experienced by patients that leaves them with chronic pain and/or loss of function. Currently, no clinically approved imaging technique exists to enhance nerve visualization in the operating room. Fluorescence image-guided surgery has gained in popularity and clinical acceptance over the past decade with a handful of imaging systems approved for clinical use. However, contrast agent development to complement these fluorescence-imaging systems has lagged behind with all currently approved fluorescent agents providing untargeted blood pool information. Nerve-specific fluorophores are known, however translations of these agents to the clinic has been complicated by their lipophilic nature, which necessitates specialized formulation strategies for successful systemic administration. To date the known nerve-specific fluorophores have only been demonstrated preclinically due to the necessity of a dimethyl sulfoxide containing formulation for solubilization. In the current study, a polymeric micellar (PM) formulation strategy was developed for a representative nerve-specific fluorophore from the distyrylbenzene family, BMB. The PM formulation strategy was able to solubilize BMB and demonstrated improved nerve-specific accumulation and fluorescence intensity when the same fluorophore dose was administered to mice utilizing the previous formulation strategy. The success of the PM formulation strategy will be important for moving toward clinical translation of these novel nerve-specific probes as it is nontoxic and biodegradable and has the potential to decrease the necessary dose for imaging while also improving the safety profile. American Chemical Society 2015-10-20 2015-12-07 /pmc/articles/PMC4674818/ /pubmed/26485440 http://dx.doi.org/10.1021/acs.molpharmaceut.5b00582 Text en Copyright © 2015 American Chemical Society This is an open access article published under an ACS AuthorChoice License (http://pubs.acs.org/page/policy/authorchoice_termsofuse.html) , which permits copying and redistribution of the article or any adaptations for non-commercial purposes. |
spellingShingle | Hackman, Kayla M. Doddapaneni, Bhuvana Shyam Barth, Connor W. Wierzbicki, Igor H. Alani, Adam W. G. Gibbs, Summer L. Polymeric Micelles as Carriers for Nerve-Highlighting Fluorescent Probe Delivery |
title | Polymeric Micelles as Carriers for Nerve-Highlighting
Fluorescent Probe Delivery |
title_full | Polymeric Micelles as Carriers for Nerve-Highlighting
Fluorescent Probe Delivery |
title_fullStr | Polymeric Micelles as Carriers for Nerve-Highlighting
Fluorescent Probe Delivery |
title_full_unstemmed | Polymeric Micelles as Carriers for Nerve-Highlighting
Fluorescent Probe Delivery |
title_short | Polymeric Micelles as Carriers for Nerve-Highlighting
Fluorescent Probe Delivery |
title_sort | polymeric micelles as carriers for nerve-highlighting
fluorescent probe delivery |
url | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC4674818/ https://www.ncbi.nlm.nih.gov/pubmed/26485440 http://dx.doi.org/10.1021/acs.molpharmaceut.5b00582 |
work_keys_str_mv | AT hackmankaylam polymericmicellesascarriersfornervehighlightingfluorescentprobedelivery AT doddapanenibhuvanashyam polymericmicellesascarriersfornervehighlightingfluorescentprobedelivery AT barthconnorw polymericmicellesascarriersfornervehighlightingfluorescentprobedelivery AT wierzbickiigorh polymericmicellesascarriersfornervehighlightingfluorescentprobedelivery AT alaniadamwg polymericmicellesascarriersfornervehighlightingfluorescentprobedelivery AT gibbssummerl polymericmicellesascarriersfornervehighlightingfluorescentprobedelivery |