Cargando…
Proteome Analysis of Renoprotection Mediated by a Novel Cyclic Helix B Peptide in Acute Kidney Injury
We developed a novel, erythropoietin-derived, non-erythropoiesis, cyclic helix B peptide (CHBP) that displays potent renoprotection against acute kidney injury (AKI). To determine the mechanism of CHBP-mediated protection, we investigated the proteomic profile of mice treated with CHBP in a kidney i...
Autores principales: | , , , , , , , , , , |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
Nature Publishing Group
2015
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC4674932/ https://www.ncbi.nlm.nih.gov/pubmed/26655840 http://dx.doi.org/10.1038/srep18045 |
Sumario: | We developed a novel, erythropoietin-derived, non-erythropoiesis, cyclic helix B peptide (CHBP) that displays potent renoprotection against acute kidney injury (AKI). To determine the mechanism of CHBP-mediated protection, we investigated the proteomic profile of mice treated with CHBP in a kidney ischemia-reperfusion (IR) injury model. The isobaric tags for relative and absolute quantitation (iTRAQ)-labeled samples were analyzed using a QSTAR XL LC/MS system. In total, 38 differentially expressed proteins (DEPs) were shared by all experimental groups, while 3 DEPs were detected specifically in the IR + CHBP group. Eight significant pathways were identified, and oxidative phosphorylation was shown to be the most important pathway in CHBP-mediated renoprotection. The significant DEPs in the oxidative phosphorylation pathway elicited by CHBP are NADH-ubiquinone oxidoreductase Fe-S protein 6 (NDUFS6), alpha-aminoadipic semialdehyde synthase (AASS) and ATP-binding cassette sub-family D member 3 (ABCD3). The DEPs mentioned above were verified by RT-qPCR and immunostaining in mouse kidneys. We tested 6 DEPs in human biopsy samples from kidney transplant recipients. The trend of differential expression was consistent with that in the murine model. In conclusion, this study helps to elucidate the pharmacological mechanisms of CHBP before clinical translation. |
---|