Cargando…

A method for reproducible measurements of serum BDNF: comparison of the performance of six commercial assays

Brain-Derived Neurotrophic Factor (BDNF) has attracted increasing interest as potential biomarker to support the diagnosis or monitor the efficacy of therapies in brain disorders. Circulating BDNF can be measured in serum, plasma or whole blood. However, the use of BDNF as biomarker is limited by th...

Descripción completa

Detalles Bibliográficos
Autores principales: Polacchini, Alessio, Metelli, Giuliana, Francavilla, Ruggiero, Baj, Gabriele, Florean, Marina, Mascaretti, Luca Giovanni, Tongiorgi, Enrico
Formato: Online Artículo Texto
Lenguaje:English
Publicado: Nature Publishing Group 2015
Materias:
Acceso en línea:https://www.ncbi.nlm.nih.gov/pmc/articles/PMC4675070/
https://www.ncbi.nlm.nih.gov/pubmed/26656852
http://dx.doi.org/10.1038/srep17989
Descripción
Sumario:Brain-Derived Neurotrophic Factor (BDNF) has attracted increasing interest as potential biomarker to support the diagnosis or monitor the efficacy of therapies in brain disorders. Circulating BDNF can be measured in serum, plasma or whole blood. However, the use of BDNF as biomarker is limited by the poor reproducibility of results, likely due to the variety of methods used for sample collection and BDNF analysis. To overcome these limitations, using sera from 40 healthy adults, we compared the performance of five ELISA kits (Aviscera-Bioscience, Biosensis, Millipore-ChemiKine(TM), Promega-Emax(®), R&D-System-Quantikine(®)) and one multiplexing assay (Millipore-Milliplex(®)). All kits showed 100% sample recovery and comparable range. However, they exhibited very different inter-assay variations from 5% to 20%. Inter-assay variations were higher than those declared by the manufacturers with only one exception which also had the best overall performance. Dot-blot analysis revealed that two kits selectively recognize mature BDNF, while the others reacted with both pro-BDNF and mature BDNF. In conclusion, we identified two assays to obtain reliable measurements of human serum BDNF, suitable for future clinical applications.