Cargando…
A Computational Model for Aperture Control in Reach-to-Grasp Movement Based on Predictive Variability
In human reach-to-grasp movement, visual occlusion of a target object leads to a larger peak grip aperture compared to conditions where online vision is available. However, no previous computational and neural network models for reach-to-grasp movement explain the mechanism of this effect. We simula...
Autores principales: | Takemura, Naohiro, Fukui, Takao, Inui, Toshio |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
Frontiers Media S.A.
2015
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC4675317/ https://www.ncbi.nlm.nih.gov/pubmed/26696874 http://dx.doi.org/10.3389/fncom.2015.00143 |
Ejemplares similares
-
A neural network model for development of reaching and pointing based on the interaction of forward and inverse transformations
por: Takemura, Naohiro, et al.
Publicado: (2017) -
Grasp aperture corrections in reach-to-grasp movements do not reliably alter size perception
por: van Polanen, Vonne
Publicado: (2021) -
Inference of Upcoming Human Grasp Using EMG During Reach-to-Grasp Movement
por: Han, Mo, et al.
Publicado: (2022) -
Odor Modulates Hand Movements in a Reach-to-Grasp Task
por: Yang, Yang, et al.
Publicado: (2020) -
Decoding Different Reach-and-Grasp Movements Using Noninvasive Electroencephalogram
por: Xu, Baoguo, et al.
Publicado: (2021)