Cargando…
An Integrated Qualitative and Quantitative Biochemical Model Learning Framework Using Evolutionary Strategy and Simulated Annealing
Both qualitative and quantitative model learning frameworks for biochemical systems have been studied in computational systems biology. In this research, after introducing two forms of pre-defined component patterns to represent biochemical models, we propose an integrative qualitative and quantitat...
Autores principales: | Wu, Zujian, Pang, Wei, Coghill, George M. |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
Springer US
2015
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC4675806/ https://www.ncbi.nlm.nih.gov/pubmed/26693255 http://dx.doi.org/10.1007/s12559-015-9328-x |
Ejemplares similares
-
An integrative top-down and bottom-up qualitative model construction framework for exploration of biochemical systems
por: Wu, Zujian, et al.
Publicado: (2014) -
Qualitative, semi-quantitative, and quantitative simulation of the osmoregulation system in yeast
por: Pang, Wei, et al.
Publicado: (2015) -
QML-AiNet: An immune network approach to learning qualitative differential equation models
por: Pang, Wei, et al.
Publicado: (2015) -
ECNet is an evolutionary context-integrated deep learning framework for protein engineering
por: Luo, Yunan, et al.
Publicado: (2021) -
Multi-agent Reinforcement Learning Using Simulated Quantum Annealing
por: Neumann, Niels M. P., et al.
Publicado: (2020)