Cargando…

Lead Telluride Quantum Dot Solar Cells Displaying External Quantum Efficiencies Exceeding 120%

[Image: see text] Multiple exciton generation (MEG) in semiconducting quantum dots is a process that produces multiple charge-carrier pairs from a single excitation. MEG is a possible route to bypass the Shockley-Queisser limit in single-junction solar cells but it remains challenging to harvest cha...

Descripción completa

Detalles Bibliográficos
Autores principales: Böhm, Marcus L., Jellicoe, Tom C., Tabachnyk, Maxim, Davis, Nathaniel J. L. K., Wisnivesky-Rocca-Rivarola, Florencia, Ducati, Caterina, Ehrler, Bruno, Bakulin, Artem A., Greenham, Neil C.
Formato: Online Artículo Texto
Lenguaje:English
Publicado: American Chemical Society 2015
Acceso en línea:https://www.ncbi.nlm.nih.gov/pmc/articles/PMC4676030/
https://www.ncbi.nlm.nih.gov/pubmed/26488847
http://dx.doi.org/10.1021/acs.nanolett.5b03161
_version_ 1782405097110634496
author Böhm, Marcus L.
Jellicoe, Tom C.
Tabachnyk, Maxim
Davis, Nathaniel J. L. K.
Wisnivesky-Rocca-Rivarola, Florencia
Ducati, Caterina
Ehrler, Bruno
Bakulin, Artem A.
Greenham, Neil C.
author_facet Böhm, Marcus L.
Jellicoe, Tom C.
Tabachnyk, Maxim
Davis, Nathaniel J. L. K.
Wisnivesky-Rocca-Rivarola, Florencia
Ducati, Caterina
Ehrler, Bruno
Bakulin, Artem A.
Greenham, Neil C.
author_sort Böhm, Marcus L.
collection PubMed
description [Image: see text] Multiple exciton generation (MEG) in semiconducting quantum dots is a process that produces multiple charge-carrier pairs from a single excitation. MEG is a possible route to bypass the Shockley-Queisser limit in single-junction solar cells but it remains challenging to harvest charge-carrier pairs generated by MEG in working photovoltaic devices. Initial yields of additional carrier pairs may be reduced due to ultrafast intraband relaxation processes that compete with MEG at early times. Quantum dots of materials that display reduced carrier cooling rates (e.g., PbTe) are therefore promising candidates to increase the impact of MEG in photovoltaic devices. Here we demonstrate PbTe quantum dot-based solar cells, which produce extractable charge carrier pairs with an external quantum efficiency above 120%, and we estimate an internal quantum efficiency exceeding 150%. Resolving the charge carrier kinetics on the ultrafast time scale with pump–probe transient absorption and pump–push–photocurrent measurements, we identify a delayed cooling effect above the threshold energy for MEG.
format Online
Article
Text
id pubmed-4676030
institution National Center for Biotechnology Information
language English
publishDate 2015
publisher American Chemical Society
record_format MEDLINE/PubMed
spelling pubmed-46760302015-12-15 Lead Telluride Quantum Dot Solar Cells Displaying External Quantum Efficiencies Exceeding 120% Böhm, Marcus L. Jellicoe, Tom C. Tabachnyk, Maxim Davis, Nathaniel J. L. K. Wisnivesky-Rocca-Rivarola, Florencia Ducati, Caterina Ehrler, Bruno Bakulin, Artem A. Greenham, Neil C. Nano Lett [Image: see text] Multiple exciton generation (MEG) in semiconducting quantum dots is a process that produces multiple charge-carrier pairs from a single excitation. MEG is a possible route to bypass the Shockley-Queisser limit in single-junction solar cells but it remains challenging to harvest charge-carrier pairs generated by MEG in working photovoltaic devices. Initial yields of additional carrier pairs may be reduced due to ultrafast intraband relaxation processes that compete with MEG at early times. Quantum dots of materials that display reduced carrier cooling rates (e.g., PbTe) are therefore promising candidates to increase the impact of MEG in photovoltaic devices. Here we demonstrate PbTe quantum dot-based solar cells, which produce extractable charge carrier pairs with an external quantum efficiency above 120%, and we estimate an internal quantum efficiency exceeding 150%. Resolving the charge carrier kinetics on the ultrafast time scale with pump–probe transient absorption and pump–push–photocurrent measurements, we identify a delayed cooling effect above the threshold energy for MEG. American Chemical Society 2015-10-21 2015-12-09 /pmc/articles/PMC4676030/ /pubmed/26488847 http://dx.doi.org/10.1021/acs.nanolett.5b03161 Text en Copyright © 2015 American Chemical Society This is an open access article published under a Creative Commons Attribution (CC-BY) License (http://pubs.acs.org/page/policy/authorchoice_ccby_termsofuse.html) , which permits unrestricted use, distribution and reproduction in any medium, provided the author and source are cited.
spellingShingle Böhm, Marcus L.
Jellicoe, Tom C.
Tabachnyk, Maxim
Davis, Nathaniel J. L. K.
Wisnivesky-Rocca-Rivarola, Florencia
Ducati, Caterina
Ehrler, Bruno
Bakulin, Artem A.
Greenham, Neil C.
Lead Telluride Quantum Dot Solar Cells Displaying External Quantum Efficiencies Exceeding 120%
title Lead Telluride Quantum Dot Solar Cells Displaying External Quantum Efficiencies Exceeding 120%
title_full Lead Telluride Quantum Dot Solar Cells Displaying External Quantum Efficiencies Exceeding 120%
title_fullStr Lead Telluride Quantum Dot Solar Cells Displaying External Quantum Efficiencies Exceeding 120%
title_full_unstemmed Lead Telluride Quantum Dot Solar Cells Displaying External Quantum Efficiencies Exceeding 120%
title_short Lead Telluride Quantum Dot Solar Cells Displaying External Quantum Efficiencies Exceeding 120%
title_sort lead telluride quantum dot solar cells displaying external quantum efficiencies exceeding 120%
url https://www.ncbi.nlm.nih.gov/pmc/articles/PMC4676030/
https://www.ncbi.nlm.nih.gov/pubmed/26488847
http://dx.doi.org/10.1021/acs.nanolett.5b03161
work_keys_str_mv AT bohmmarcusl leadtelluridequantumdotsolarcellsdisplayingexternalquantumefficienciesexceeding120
AT jellicoetomc leadtelluridequantumdotsolarcellsdisplayingexternalquantumefficienciesexceeding120
AT tabachnykmaxim leadtelluridequantumdotsolarcellsdisplayingexternalquantumefficienciesexceeding120
AT davisnathanieljlk leadtelluridequantumdotsolarcellsdisplayingexternalquantumefficienciesexceeding120
AT wisniveskyroccarivarolaflorencia leadtelluridequantumdotsolarcellsdisplayingexternalquantumefficienciesexceeding120
AT ducaticaterina leadtelluridequantumdotsolarcellsdisplayingexternalquantumefficienciesexceeding120
AT ehrlerbruno leadtelluridequantumdotsolarcellsdisplayingexternalquantumefficienciesexceeding120
AT bakulinartema leadtelluridequantumdotsolarcellsdisplayingexternalquantumefficienciesexceeding120
AT greenhamneilc leadtelluridequantumdotsolarcellsdisplayingexternalquantumefficienciesexceeding120