Cargando…

Cell adhesion manipulation through single cell assembly for characterization of initial cell-to-cell interaction

BACKGROUND: Cell-to-cell interactions are complex processes that involve physical interactions, chemical binding, and biological signaling pathways. Identification of the functions of special signaling pathway in cell-to-cell interaction from the very first contact will help characterize the mechani...

Descripción completa

Detalles Bibliográficos
Autores principales: Gou, Xue, Wang, Ran, Lam, Stephen S. Y., Hou, Jundi, Leung, Anskar Y. H., Sun, Dong
Formato: Online Artículo Texto
Lenguaje:English
Publicado: BioMed Central 2015
Materias:
Acceso en línea:https://www.ncbi.nlm.nih.gov/pmc/articles/PMC4676142/
https://www.ncbi.nlm.nih.gov/pubmed/26652601
http://dx.doi.org/10.1186/s12938-015-0109-2
Descripción
Sumario:BACKGROUND: Cell-to-cell interactions are complex processes that involve physical interactions, chemical binding, and biological signaling pathways. Identification of the functions of special signaling pathway in cell-to-cell interaction from the very first contact will help characterize the mechanism underlying the interaction and advance new drug discovery. METHODS: This paper reported a case study of characterizing initial interaction between leukemia cancer cells and bone marrow stromal cells, through the use of an optical tweezers-based cell manipulation tool. Optical traps were used to assemble leukemia cells at different positions of the stromal cell layer and enable their interactions by applying a small trapping force to maintain the cell contact for a few minutes. Specific drug was used to inhibit the binding of molecules during receptor-ligand-mediated adhesion. RESULTS AND CONCLUSIONS: Our results showed that the amount of adhesion molecule could affect cell adhesion during the first few minutes contact. We also found that leukemia cancer cells could migrate on the stromal cell layer, which was dependent on the adhesion state and activation triggered by specific chemokine. The reported approaches provided a new opportunity to investigate cell-to-cell interaction through single cell adhesion manipulation.