Cargando…
MAST: a flexible statistical framework for assessing transcriptional changes and characterizing heterogeneity in single-cell RNA sequencing data
Single-cell transcriptomics reveals gene expression heterogeneity but suffers from stochastic dropout and characteristic bimodal expression distributions in which expression is either strongly non-zero or non-detectable. We propose a two-part, generalized linear model for such bimodal data that para...
Autores principales: | , , , , , , , , , , , |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
BioMed Central
2015
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC4676162/ https://www.ncbi.nlm.nih.gov/pubmed/26653891 http://dx.doi.org/10.1186/s13059-015-0844-5 |
_version_ | 1782405124833935360 |
---|---|
author | Finak, Greg McDavid, Andrew Yajima, Masanao Deng, Jingyuan Gersuk, Vivian Shalek, Alex K. Slichter, Chloe K. Miller, Hannah W. McElrath, M. Juliana Prlic, Martin Linsley, Peter S. Gottardo, Raphael |
author_facet | Finak, Greg McDavid, Andrew Yajima, Masanao Deng, Jingyuan Gersuk, Vivian Shalek, Alex K. Slichter, Chloe K. Miller, Hannah W. McElrath, M. Juliana Prlic, Martin Linsley, Peter S. Gottardo, Raphael |
author_sort | Finak, Greg |
collection | PubMed |
description | Single-cell transcriptomics reveals gene expression heterogeneity but suffers from stochastic dropout and characteristic bimodal expression distributions in which expression is either strongly non-zero or non-detectable. We propose a two-part, generalized linear model for such bimodal data that parameterizes both of these features. We argue that the cellular detection rate, the fraction of genes expressed in a cell, should be adjusted for as a source of nuisance variation. Our model provides gene set enrichment analysis tailored to single-cell data. It provides insights into how networks of co-expressed genes evolve across an experimental treatment. MAST is available at https://github.com/RGLab/MAST. ELECTRONIC SUPPLEMENTARY MATERIAL: The online version of this article (doi:10.1186/s13059-015-0844-5) contains supplementary material, which is available to authorized users. |
format | Online Article Text |
id | pubmed-4676162 |
institution | National Center for Biotechnology Information |
language | English |
publishDate | 2015 |
publisher | BioMed Central |
record_format | MEDLINE/PubMed |
spelling | pubmed-46761622015-12-12 MAST: a flexible statistical framework for assessing transcriptional changes and characterizing heterogeneity in single-cell RNA sequencing data Finak, Greg McDavid, Andrew Yajima, Masanao Deng, Jingyuan Gersuk, Vivian Shalek, Alex K. Slichter, Chloe K. Miller, Hannah W. McElrath, M. Juliana Prlic, Martin Linsley, Peter S. Gottardo, Raphael Genome Biol Method Single-cell transcriptomics reveals gene expression heterogeneity but suffers from stochastic dropout and characteristic bimodal expression distributions in which expression is either strongly non-zero or non-detectable. We propose a two-part, generalized linear model for such bimodal data that parameterizes both of these features. We argue that the cellular detection rate, the fraction of genes expressed in a cell, should be adjusted for as a source of nuisance variation. Our model provides gene set enrichment analysis tailored to single-cell data. It provides insights into how networks of co-expressed genes evolve across an experimental treatment. MAST is available at https://github.com/RGLab/MAST. ELECTRONIC SUPPLEMENTARY MATERIAL: The online version of this article (doi:10.1186/s13059-015-0844-5) contains supplementary material, which is available to authorized users. BioMed Central 2015-12-10 2015 /pmc/articles/PMC4676162/ /pubmed/26653891 http://dx.doi.org/10.1186/s13059-015-0844-5 Text en © Finak et al. 2015 Open AccessThis article is distributed under the terms of the Creative Commons Attribution 4.0 International License (http://creativecommons.org/licenses/by/4.0/), which permits unrestricted use, distribution, and reproduction in any medium, provided you give appropriate credit to the original author(s) and the source, provide a link to the Creative Commons license, and indicate if changes were made. The Creative Commons Public Domain Dedication waiver (http://creativecommons.org/publicdomain/zero/1.0/) applies to the data made available in this article, unless otherwise stated. |
spellingShingle | Method Finak, Greg McDavid, Andrew Yajima, Masanao Deng, Jingyuan Gersuk, Vivian Shalek, Alex K. Slichter, Chloe K. Miller, Hannah W. McElrath, M. Juliana Prlic, Martin Linsley, Peter S. Gottardo, Raphael MAST: a flexible statistical framework for assessing transcriptional changes and characterizing heterogeneity in single-cell RNA sequencing data |
title | MAST: a flexible statistical framework for assessing transcriptional changes and characterizing heterogeneity in single-cell RNA sequencing data |
title_full | MAST: a flexible statistical framework for assessing transcriptional changes and characterizing heterogeneity in single-cell RNA sequencing data |
title_fullStr | MAST: a flexible statistical framework for assessing transcriptional changes and characterizing heterogeneity in single-cell RNA sequencing data |
title_full_unstemmed | MAST: a flexible statistical framework for assessing transcriptional changes and characterizing heterogeneity in single-cell RNA sequencing data |
title_short | MAST: a flexible statistical framework for assessing transcriptional changes and characterizing heterogeneity in single-cell RNA sequencing data |
title_sort | mast: a flexible statistical framework for assessing transcriptional changes and characterizing heterogeneity in single-cell rna sequencing data |
topic | Method |
url | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC4676162/ https://www.ncbi.nlm.nih.gov/pubmed/26653891 http://dx.doi.org/10.1186/s13059-015-0844-5 |
work_keys_str_mv | AT finakgreg mastaflexiblestatisticalframeworkforassessingtranscriptionalchangesandcharacterizingheterogeneityinsinglecellrnasequencingdata AT mcdavidandrew mastaflexiblestatisticalframeworkforassessingtranscriptionalchangesandcharacterizingheterogeneityinsinglecellrnasequencingdata AT yajimamasanao mastaflexiblestatisticalframeworkforassessingtranscriptionalchangesandcharacterizingheterogeneityinsinglecellrnasequencingdata AT dengjingyuan mastaflexiblestatisticalframeworkforassessingtranscriptionalchangesandcharacterizingheterogeneityinsinglecellrnasequencingdata AT gersukvivian mastaflexiblestatisticalframeworkforassessingtranscriptionalchangesandcharacterizingheterogeneityinsinglecellrnasequencingdata AT shalekalexk mastaflexiblestatisticalframeworkforassessingtranscriptionalchangesandcharacterizingheterogeneityinsinglecellrnasequencingdata AT slichterchloek mastaflexiblestatisticalframeworkforassessingtranscriptionalchangesandcharacterizingheterogeneityinsinglecellrnasequencingdata AT millerhannahw mastaflexiblestatisticalframeworkforassessingtranscriptionalchangesandcharacterizingheterogeneityinsinglecellrnasequencingdata AT mcelrathmjuliana mastaflexiblestatisticalframeworkforassessingtranscriptionalchangesandcharacterizingheterogeneityinsinglecellrnasequencingdata AT prlicmartin mastaflexiblestatisticalframeworkforassessingtranscriptionalchangesandcharacterizingheterogeneityinsinglecellrnasequencingdata AT linsleypeters mastaflexiblestatisticalframeworkforassessingtranscriptionalchangesandcharacterizingheterogeneityinsinglecellrnasequencingdata AT gottardoraphael mastaflexiblestatisticalframeworkforassessingtranscriptionalchangesandcharacterizingheterogeneityinsinglecellrnasequencingdata |