Cargando…
Intervention in HCM: patient selection, procedural approach and emerging techniques in alcohol septal ablation
Hypertrophic cardiomyopathy (HCM) is a highly heterogeneous disease with varied patterns of hypertrophy. Basal septal hypertrophy and systolic anterior motion (SAM) of the mitral valve (MV) are the key pathophysiological components to left ventricular outflow tract (LVOT) obstruction in HCM. LVOT is...
Autores principales: | , , |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
Bioscientifica Ltd
2014
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC4676471/ https://www.ncbi.nlm.nih.gov/pubmed/26693329 http://dx.doi.org/10.1530/ERP-14-0058 |
Sumario: | Hypertrophic cardiomyopathy (HCM) is a highly heterogeneous disease with varied patterns of hypertrophy. Basal septal hypertrophy and systolic anterior motion (SAM) of the mitral valve (MV) are the key pathophysiological components to left ventricular outflow tract (LVOT) obstruction in HCM. LVOT is associated with higher morbidity and mortality in patients with HCM. Percutaneous septal reduction therapy with alcohol septal ablation (ASA) can lead to a significant improvement in left ventricle haemodynamics, patient symptoms and perhaps prognosis. ASA delivers pure alcohol to an area of myocardium via septal coronary arteries; this creates damage to tissue akin to a myocardial infarction. The basal septal myocardium involved in SAM–septal contact is the target for this iatrogenic infarct. Appropriate patient selection and accurate delivery of alcohol are critical to safe and effective ASA. Securing the correct diagnosis and ensuring suitable cardiac anatomy are essential before considering ASA. Pre-procedural planning and intra-procedural imaging guidance are important to delivering precise damage to the desired area. The procedure is performed worldwide and is generally safe; the need for a pacemaker is the most prominent complication. It is successful in the majority of patients but room for improvement exists. New techniques have been proposed to perform percutaneous septal reduction. We present a review of the relevant pathophysiology, current methods and a summary of available evidence for ASA. We also provide a glimpse into emerging techniques to deliver percutaneous septal reduction therapy. |
---|