Cargando…
Airway Segmentation and Centerline Extraction from Thoracic CT – Comparison of a New Method to State of the Art Commercialized Methods
INTRODUCTION: Our motivation is increased bronchoscopic diagnostic yield and optimized preparation, for navigated bronchoscopy. In navigated bronchoscopy, virtual 3D airway visualization is often used to guide a bronchoscopic tool to peripheral lesions, synchronized with the real time video bronchos...
Autores principales: | , , , , , , , , , |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
Public Library of Science
2015
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC4676651/ https://www.ncbi.nlm.nih.gov/pubmed/26657513 http://dx.doi.org/10.1371/journal.pone.0144282 |
_version_ | 1782405210047512576 |
---|---|
author | Reynisson, Pall Jens Scali, Marta Smistad, Erik Hofstad, Erlend Fagertun Leira, Håkon Olav Lindseth, Frank Nagelhus Hernes, Toril Anita Amundsen, Tore Sorger, Hanne Langø, Thomas |
author_facet | Reynisson, Pall Jens Scali, Marta Smistad, Erik Hofstad, Erlend Fagertun Leira, Håkon Olav Lindseth, Frank Nagelhus Hernes, Toril Anita Amundsen, Tore Sorger, Hanne Langø, Thomas |
author_sort | Reynisson, Pall Jens |
collection | PubMed |
description | INTRODUCTION: Our motivation is increased bronchoscopic diagnostic yield and optimized preparation, for navigated bronchoscopy. In navigated bronchoscopy, virtual 3D airway visualization is often used to guide a bronchoscopic tool to peripheral lesions, synchronized with the real time video bronchoscopy. Visualization during navigated bronchoscopy, the segmentation time and methods, differs. Time consumption and logistics are two essential aspects that need to be optimized when integrating such technologies in the interventional room. We compared three different approaches to obtain airway centerlines and surface. METHOD: CT lung dataset of 17 patients were processed in Mimics (Materialize, Leuven, Belgium), which provides a Basic module and a Pulmonology module (beta version) (MPM), OsiriX (Pixmeo, Geneva, Switzerland) and our Tube Segmentation Framework (TSF) method. Both MPM and TSF were evaluated with reference segmentation. Automatic and manual settings allowed us to segment the airways and obtain 3D models as well as the centrelines in all datasets. We compared the different procedures by user interactions such as number of clicks needed to process the data and quantitative measures concerning the quality of the segmentation and centrelines such as total length of the branches, number of branches, number of generations, and volume of the 3D model. RESULTS: The TSF method was the most automatic, while the Mimics Pulmonology Module (MPM) and the Mimics Basic Module (MBM) resulted in the highest number of branches. MPM is the software which demands the least number of clicks to process the data. We found that the freely available OsiriX was less accurate compared to the other methods regarding segmentation results. However, the TSF method provided results fastest regarding number of clicks. The MPM was able to find the highest number of branches and generations. On the other hand, the TSF is fully automatic and it provides the user with both segmentation of the airways and the centerlines. Reference segmentation comparison averages and standard deviations for MPM and TSF correspond to literature. CONCLUSION: The TSF is able to segment the airways and extract the centerlines in one single step. The number of branches found is lower for the TSF method than in Mimics. OsiriX demands the highest number of clicks to process the data, the segmentation is often sparse and extracting the centerline requires the use of another software system. Two of the software systems performed satisfactory with respect to be used in preprocessing CT images for navigated bronchoscopy, i.e. the TSF method and the MPM. According to reference segmentation both TSF and MPM are comparable with other segmentation methods. The level of automaticity and the resulting high number of branches plus the fact that both centerline and the surface of the airways were extracted, are requirements we considered particularly important. The in house method has the advantage of being an integrated part of a navigation platform for bronchoscopy, whilst the other methods can be considered preprocessing tools to a navigation system. |
format | Online Article Text |
id | pubmed-4676651 |
institution | National Center for Biotechnology Information |
language | English |
publishDate | 2015 |
publisher | Public Library of Science |
record_format | MEDLINE/PubMed |
spelling | pubmed-46766512015-12-31 Airway Segmentation and Centerline Extraction from Thoracic CT – Comparison of a New Method to State of the Art Commercialized Methods Reynisson, Pall Jens Scali, Marta Smistad, Erik Hofstad, Erlend Fagertun Leira, Håkon Olav Lindseth, Frank Nagelhus Hernes, Toril Anita Amundsen, Tore Sorger, Hanne Langø, Thomas PLoS One Research Article INTRODUCTION: Our motivation is increased bronchoscopic diagnostic yield and optimized preparation, for navigated bronchoscopy. In navigated bronchoscopy, virtual 3D airway visualization is often used to guide a bronchoscopic tool to peripheral lesions, synchronized with the real time video bronchoscopy. Visualization during navigated bronchoscopy, the segmentation time and methods, differs. Time consumption and logistics are two essential aspects that need to be optimized when integrating such technologies in the interventional room. We compared three different approaches to obtain airway centerlines and surface. METHOD: CT lung dataset of 17 patients were processed in Mimics (Materialize, Leuven, Belgium), which provides a Basic module and a Pulmonology module (beta version) (MPM), OsiriX (Pixmeo, Geneva, Switzerland) and our Tube Segmentation Framework (TSF) method. Both MPM and TSF were evaluated with reference segmentation. Automatic and manual settings allowed us to segment the airways and obtain 3D models as well as the centrelines in all datasets. We compared the different procedures by user interactions such as number of clicks needed to process the data and quantitative measures concerning the quality of the segmentation and centrelines such as total length of the branches, number of branches, number of generations, and volume of the 3D model. RESULTS: The TSF method was the most automatic, while the Mimics Pulmonology Module (MPM) and the Mimics Basic Module (MBM) resulted in the highest number of branches. MPM is the software which demands the least number of clicks to process the data. We found that the freely available OsiriX was less accurate compared to the other methods regarding segmentation results. However, the TSF method provided results fastest regarding number of clicks. The MPM was able to find the highest number of branches and generations. On the other hand, the TSF is fully automatic and it provides the user with both segmentation of the airways and the centerlines. Reference segmentation comparison averages and standard deviations for MPM and TSF correspond to literature. CONCLUSION: The TSF is able to segment the airways and extract the centerlines in one single step. The number of branches found is lower for the TSF method than in Mimics. OsiriX demands the highest number of clicks to process the data, the segmentation is often sparse and extracting the centerline requires the use of another software system. Two of the software systems performed satisfactory with respect to be used in preprocessing CT images for navigated bronchoscopy, i.e. the TSF method and the MPM. According to reference segmentation both TSF and MPM are comparable with other segmentation methods. The level of automaticity and the resulting high number of branches plus the fact that both centerline and the surface of the airways were extracted, are requirements we considered particularly important. The in house method has the advantage of being an integrated part of a navigation platform for bronchoscopy, whilst the other methods can be considered preprocessing tools to a navigation system. Public Library of Science 2015-12-11 /pmc/articles/PMC4676651/ /pubmed/26657513 http://dx.doi.org/10.1371/journal.pone.0144282 Text en © 2015 Reynisson et al http://creativecommons.org/licenses/by/4.0/ This is an open-access article distributed under the terms of the Creative Commons Attribution License, which permits unrestricted use, distribution, and reproduction in any medium, provided the original author and source are properly credited. |
spellingShingle | Research Article Reynisson, Pall Jens Scali, Marta Smistad, Erik Hofstad, Erlend Fagertun Leira, Håkon Olav Lindseth, Frank Nagelhus Hernes, Toril Anita Amundsen, Tore Sorger, Hanne Langø, Thomas Airway Segmentation and Centerline Extraction from Thoracic CT – Comparison of a New Method to State of the Art Commercialized Methods |
title | Airway Segmentation and Centerline Extraction from Thoracic CT – Comparison of a New Method to State of the Art Commercialized Methods |
title_full | Airway Segmentation and Centerline Extraction from Thoracic CT – Comparison of a New Method to State of the Art Commercialized Methods |
title_fullStr | Airway Segmentation and Centerline Extraction from Thoracic CT – Comparison of a New Method to State of the Art Commercialized Methods |
title_full_unstemmed | Airway Segmentation and Centerline Extraction from Thoracic CT – Comparison of a New Method to State of the Art Commercialized Methods |
title_short | Airway Segmentation and Centerline Extraction from Thoracic CT – Comparison of a New Method to State of the Art Commercialized Methods |
title_sort | airway segmentation and centerline extraction from thoracic ct – comparison of a new method to state of the art commercialized methods |
topic | Research Article |
url | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC4676651/ https://www.ncbi.nlm.nih.gov/pubmed/26657513 http://dx.doi.org/10.1371/journal.pone.0144282 |
work_keys_str_mv | AT reynissonpalljens airwaysegmentationandcenterlineextractionfromthoracicctcomparisonofanewmethodtostateoftheartcommercializedmethods AT scalimarta airwaysegmentationandcenterlineextractionfromthoracicctcomparisonofanewmethodtostateoftheartcommercializedmethods AT smistaderik airwaysegmentationandcenterlineextractionfromthoracicctcomparisonofanewmethodtostateoftheartcommercializedmethods AT hofstaderlendfagertun airwaysegmentationandcenterlineextractionfromthoracicctcomparisonofanewmethodtostateoftheartcommercializedmethods AT leirahakonolav airwaysegmentationandcenterlineextractionfromthoracicctcomparisonofanewmethodtostateoftheartcommercializedmethods AT lindsethfrank airwaysegmentationandcenterlineextractionfromthoracicctcomparisonofanewmethodtostateoftheartcommercializedmethods AT nagelhushernestorilanita airwaysegmentationandcenterlineextractionfromthoracicctcomparisonofanewmethodtostateoftheartcommercializedmethods AT amundsentore airwaysegmentationandcenterlineextractionfromthoracicctcomparisonofanewmethodtostateoftheartcommercializedmethods AT sorgerhanne airwaysegmentationandcenterlineextractionfromthoracicctcomparisonofanewmethodtostateoftheartcommercializedmethods AT langøthomas airwaysegmentationandcenterlineextractionfromthoracicctcomparisonofanewmethodtostateoftheartcommercializedmethods |