Cargando…
Clinical decision support software for diabetic foot risk stratification: development and formative evaluation
BACKGROUND: Identifying people at risk of developing diabetic foot complications is a vital step in prevention programs in primary healthcare settings. Diabetic foot risk stratification systems predict foot ulceration. The aim of this study was to explore the views and experiences of potential end u...
Autores principales: | , , |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
BioMed Central
2015
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC4676878/ https://www.ncbi.nlm.nih.gov/pubmed/26692903 http://dx.doi.org/10.1186/s13047-015-0128-z |
Sumario: | BACKGROUND: Identifying people at risk of developing diabetic foot complications is a vital step in prevention programs in primary healthcare settings. Diabetic foot risk stratification systems predict foot ulceration. The aim of this study was to explore the views and experiences of potential end users during development and formative evaluations of an electronic diabetic foot risk stratification tool based on evidence-based guidelines and determine the accuracy of the tool. METHODS: Formative evaluation of the risk tool occurred in five stages over an eight-month period and employed a mixed methods research design consisting of semi-structured interviews, focus group and participant observation, online survey, expert review, comparison to the Australian Guidelines and clinical testing. RESULTS: A total of 43 healthcare practitioners trialled the computerised clinical decision support system during development, with multiple software changes made as a result of feedback. Individual and focus group participants exposed critical design flaws. Live testing revealed risk stratification errors and functional limitations providing the basis for practical improvements. In the final product, all risk calculations and recommendations made by the clinical decision support system reflect current Australian Guidelines. CONCLUSIONS: Development of the computerised clinical decision support system using evidence-based guidelines can be optimised by a multidisciplinary iterative process of feedback, testing and software adaptation by experts in modern development technologies. |
---|