Cargando…

Cell-Free Protein Synthesis: Pros and Cons of Prokaryotic and Eukaryotic Systems

From its start as a small-scale in vitro system to study fundamental translation processes, cell-free protein synthesis quickly rose to become a potent platform for the high-yield production of proteins. In contrast to classical in vivo protein expression, cell-free systems do not need time-consumin...

Descripción completa

Detalles Bibliográficos
Autores principales: Zemella, Anne, Thoring, Lena, Hoffmeister, Christian, Kubick, Stefan
Formato: Online Artículo Texto
Lenguaje:English
Publicado: John Wiley & Sons, Ltd 2015
Materias:
Acceso en línea:https://www.ncbi.nlm.nih.gov/pmc/articles/PMC4676933/
https://www.ncbi.nlm.nih.gov/pubmed/26478227
http://dx.doi.org/10.1002/cbic.201500340
Descripción
Sumario:From its start as a small-scale in vitro system to study fundamental translation processes, cell-free protein synthesis quickly rose to become a potent platform for the high-yield production of proteins. In contrast to classical in vivo protein expression, cell-free systems do not need time-consuming cloning steps, and the open nature provides easy manipulation of reaction conditions as well as high-throughput potential. Especially for the synthesis of difficult to express proteins, such as toxic and transmembrane proteins, cell-free systems are of enormous interest. The modification of the genetic code to incorporate non-canonical amino acids into the target protein in particular provides enormous potential in biotechnology and pharmaceutical research and is in the focus of many cell-free projects. Many sophisticated cell-free systems for manifold applications have been established. This review describes the recent advances in cell-free protein synthesis and details the expanding applications in this field.