Cargando…
Closed-Loop Neuromorphic Benchmarks
Evaluating the effectiveness and performance of neuromorphic hardware is difficult. It is even more difficult when the task of interest is a closed-loop task; that is, a task where the output from the neuromorphic hardware affects some environment, which then in turn affects the hardware's futu...
Autores principales: | Stewart, Terrence C., DeWolf, Travis, Kleinhans, Ashley, Eliasmith, Chris |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
Frontiers Media S.A.
2015
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC4678234/ https://www.ncbi.nlm.nih.gov/pubmed/26696820 http://dx.doi.org/10.3389/fnins.2015.00464 |
Ejemplares similares
-
Benchmarking neuromorphic systems with Nengo
por: Bekolay, Trevor, et al.
Publicado: (2015) -
Neuromorphic Engineering Needs Closed-Loop Benchmarks
por: Milde, Moritz B., et al.
Publicado: (2022) -
Serendipitous Offline Learning in a Neuromorphic Robot
por: Stewart, Terrence C., et al.
Publicado: (2016) -
Nengo and Low-Power AI Hardware for Robust, Embedded Neurorobotics
por: DeWolf, Travis, et al.
Publicado: (2020) -
Nengo: a Python tool for building large-scale functional brain models
por: Bekolay, Trevor, et al.
Publicado: (2014)