Cargando…

A simple coculture system shows mutualism between anaerobic faecalibacteria and epithelial Caco-2 cells

Most gut bacteria are obligate anaerobes and are important for human health. However, little mechanistic insight is available on the health benefits of specific anaerobic gut bacteria. A main obstacle in generating such knowledge is the lack of simple and robust coculturing methods for anaerobic bac...

Descripción completa

Detalles Bibliográficos
Autores principales: Sadaghian Sadabad, Mehdi, von Martels, Julius Z. H., Khan, Muhammed Tanweer, Blokzijl, Tjasso, Paglia, Giuseppe, Dijkstra, Gerard, Harmsen, Hermie J. M., Faber, Klaas Nico
Formato: Online Artículo Texto
Lenguaje:English
Publicado: Nature Publishing Group 2015
Materias:
Acceso en línea:https://www.ncbi.nlm.nih.gov/pmc/articles/PMC4678368/
https://www.ncbi.nlm.nih.gov/pubmed/26667159
http://dx.doi.org/10.1038/srep17906
Descripción
Sumario:Most gut bacteria are obligate anaerobes and are important for human health. However, little mechanistic insight is available on the health benefits of specific anaerobic gut bacteria. A main obstacle in generating such knowledge is the lack of simple and robust coculturing methods for anaerobic bacteria and oxygen-requiring human cells. Here, we describe the development of a coculture system for intestinal Caco-2 cells and an anaerobic symbiont, Faecalibacterium prausnitzii, making use of 50 mL culture tubes. F. prausnitzii was grown in 40 mL YCFAG-agar with glass-adhered Caco-2 cells placed on top in 10 mL DMEM medium. Grown for 18–36 h in a humidified incubator at 37 °C and 5% CO(2), coverslip-attached Caco-2 cells promoted growth and metabolism of F. prausnitzii, while F. prausnitzii suppressed inflammation and oxidative stress in Caco-2 cells. F. prausnitzii did not compromise Caco-2 cell viability. Exogenously added porcine mucin also promoted growth of F. prausnitzii, suggesting that it may be part of the mechanism of Caco-2-stimulated growth of F. prausnitzii. This ‘Human oxygen-Bacteria anaerobic‘ (HoxBan) coculturing system uniquely establishes host-microbe mutualism of a beneficial anaerobic gut microbe in vitro and principally allows the analysis of host-microbe interactions of pure and mixed cultures of bacteria and human cells.