Cargando…
RiboAbacus: a model trained on polyribosome images predicts ribosome density and translational efficiency from mammalian transcriptomes
Fluctuations in mRNA levels only partially contribute to determine variations in mRNA availability for translation, producing the well-known poor correlation between transcriptome and proteome data. Recent advances in microscopy now enable researchers to obtain high resolution images of ribosomes on...
Autores principales: | , , , , , , , , , , , , |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
Oxford University Press
2015
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC4678843/ https://www.ncbi.nlm.nih.gov/pubmed/26240374 http://dx.doi.org/10.1093/nar/gkv781 |
_version_ | 1782405516349145088 |
---|---|
author | Lauria, Fabio Tebaldi, Toma Lunelli, Lorenzo Struffi, Paolo Gatto, Pamela Pugliese, Andrea Brigotti, Maurizio Montanaro, Lorenzo Ciribilli, Yari Inga, Alberto Quattrone, Alessandro Sanguinetti, Guido Viero, Gabriella |
author_facet | Lauria, Fabio Tebaldi, Toma Lunelli, Lorenzo Struffi, Paolo Gatto, Pamela Pugliese, Andrea Brigotti, Maurizio Montanaro, Lorenzo Ciribilli, Yari Inga, Alberto Quattrone, Alessandro Sanguinetti, Guido Viero, Gabriella |
author_sort | Lauria, Fabio |
collection | PubMed |
description | Fluctuations in mRNA levels only partially contribute to determine variations in mRNA availability for translation, producing the well-known poor correlation between transcriptome and proteome data. Recent advances in microscopy now enable researchers to obtain high resolution images of ribosomes on transcripts, providing precious snapshots of translation in vivo. Here we propose RiboAbacus, a mathematical model that for the first time incorporates imaging data in a predictive model of transcript-specific ribosome densities and translational efficiencies. RiboAbacus uses a mechanistic model of ribosome dynamics, enabling the quantification of the relative importance of different features (such as codon usage and the 5′ ramp effect) in determining the accuracy of predictions. The model has been optimized in the human Hek-293 cell line to fit thousands of images of human polysomes obtained by atomic force microscopy, from which we could get a reference distribution of the number of ribosomes per mRNA with unmatched resolution. After validation, we applied RiboAbacus to three case studies of known transcriptome-proteome datasets for estimating the translational efficiencies, resulting in an increased correlation with corresponding proteomes. RiboAbacus is an intuitive tool that allows an immediate estimation of crucial translation properties for entire transcriptomes, based on easily obtainable transcript expression levels. |
format | Online Article Text |
id | pubmed-4678843 |
institution | National Center for Biotechnology Information |
language | English |
publishDate | 2015 |
publisher | Oxford University Press |
record_format | MEDLINE/PubMed |
spelling | pubmed-46788432015-12-16 RiboAbacus: a model trained on polyribosome images predicts ribosome density and translational efficiency from mammalian transcriptomes Lauria, Fabio Tebaldi, Toma Lunelli, Lorenzo Struffi, Paolo Gatto, Pamela Pugliese, Andrea Brigotti, Maurizio Montanaro, Lorenzo Ciribilli, Yari Inga, Alberto Quattrone, Alessandro Sanguinetti, Guido Viero, Gabriella Nucleic Acids Res Methods Online Fluctuations in mRNA levels only partially contribute to determine variations in mRNA availability for translation, producing the well-known poor correlation between transcriptome and proteome data. Recent advances in microscopy now enable researchers to obtain high resolution images of ribosomes on transcripts, providing precious snapshots of translation in vivo. Here we propose RiboAbacus, a mathematical model that for the first time incorporates imaging data in a predictive model of transcript-specific ribosome densities and translational efficiencies. RiboAbacus uses a mechanistic model of ribosome dynamics, enabling the quantification of the relative importance of different features (such as codon usage and the 5′ ramp effect) in determining the accuracy of predictions. The model has been optimized in the human Hek-293 cell line to fit thousands of images of human polysomes obtained by atomic force microscopy, from which we could get a reference distribution of the number of ribosomes per mRNA with unmatched resolution. After validation, we applied RiboAbacus to three case studies of known transcriptome-proteome datasets for estimating the translational efficiencies, resulting in an increased correlation with corresponding proteomes. RiboAbacus is an intuitive tool that allows an immediate estimation of crucial translation properties for entire transcriptomes, based on easily obtainable transcript expression levels. Oxford University Press 2015-12-15 2015-08-03 /pmc/articles/PMC4678843/ /pubmed/26240374 http://dx.doi.org/10.1093/nar/gkv781 Text en © The Author(s) 2015. Published by Oxford University Press on behalf of Nucleic Acids Research. http://creativecommons.org/licenses/by-nc/4.0/ This is an Open Access article distributed under the terms of the Creative Commons Attribution License (http://creativecommons.org/licenses/by-nc/4.0/), which permits non-commercial re-use, distribution, and reproduction in any medium, provided the original work is properly cited. For commercial re-use, please contact journals.permissions@oup.com |
spellingShingle | Methods Online Lauria, Fabio Tebaldi, Toma Lunelli, Lorenzo Struffi, Paolo Gatto, Pamela Pugliese, Andrea Brigotti, Maurizio Montanaro, Lorenzo Ciribilli, Yari Inga, Alberto Quattrone, Alessandro Sanguinetti, Guido Viero, Gabriella RiboAbacus: a model trained on polyribosome images predicts ribosome density and translational efficiency from mammalian transcriptomes |
title | RiboAbacus: a model trained on polyribosome images predicts ribosome density and translational efficiency from mammalian transcriptomes |
title_full | RiboAbacus: a model trained on polyribosome images predicts ribosome density and translational efficiency from mammalian transcriptomes |
title_fullStr | RiboAbacus: a model trained on polyribosome images predicts ribosome density and translational efficiency from mammalian transcriptomes |
title_full_unstemmed | RiboAbacus: a model trained on polyribosome images predicts ribosome density and translational efficiency from mammalian transcriptomes |
title_short | RiboAbacus: a model trained on polyribosome images predicts ribosome density and translational efficiency from mammalian transcriptomes |
title_sort | riboabacus: a model trained on polyribosome images predicts ribosome density and translational efficiency from mammalian transcriptomes |
topic | Methods Online |
url | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC4678843/ https://www.ncbi.nlm.nih.gov/pubmed/26240374 http://dx.doi.org/10.1093/nar/gkv781 |
work_keys_str_mv | AT lauriafabio riboabacusamodeltrainedonpolyribosomeimagespredictsribosomedensityandtranslationalefficiencyfrommammaliantranscriptomes AT tebalditoma riboabacusamodeltrainedonpolyribosomeimagespredictsribosomedensityandtranslationalefficiencyfrommammaliantranscriptomes AT lunellilorenzo riboabacusamodeltrainedonpolyribosomeimagespredictsribosomedensityandtranslationalefficiencyfrommammaliantranscriptomes AT struffipaolo riboabacusamodeltrainedonpolyribosomeimagespredictsribosomedensityandtranslationalefficiencyfrommammaliantranscriptomes AT gattopamela riboabacusamodeltrainedonpolyribosomeimagespredictsribosomedensityandtranslationalefficiencyfrommammaliantranscriptomes AT puglieseandrea riboabacusamodeltrainedonpolyribosomeimagespredictsribosomedensityandtranslationalefficiencyfrommammaliantranscriptomes AT brigottimaurizio riboabacusamodeltrainedonpolyribosomeimagespredictsribosomedensityandtranslationalefficiencyfrommammaliantranscriptomes AT montanarolorenzo riboabacusamodeltrainedonpolyribosomeimagespredictsribosomedensityandtranslationalefficiencyfrommammaliantranscriptomes AT ciribilliyari riboabacusamodeltrainedonpolyribosomeimagespredictsribosomedensityandtranslationalefficiencyfrommammaliantranscriptomes AT ingaalberto riboabacusamodeltrainedonpolyribosomeimagespredictsribosomedensityandtranslationalefficiencyfrommammaliantranscriptomes AT quattronealessandro riboabacusamodeltrainedonpolyribosomeimagespredictsribosomedensityandtranslationalefficiencyfrommammaliantranscriptomes AT sanguinettiguido riboabacusamodeltrainedonpolyribosomeimagespredictsribosomedensityandtranslationalefficiencyfrommammaliantranscriptomes AT vierogabriella riboabacusamodeltrainedonpolyribosomeimagespredictsribosomedensityandtranslationalefficiencyfrommammaliantranscriptomes |