Cargando…

RiboAbacus: a model trained on polyribosome images predicts ribosome density and translational efficiency from mammalian transcriptomes

Fluctuations in mRNA levels only partially contribute to determine variations in mRNA availability for translation, producing the well-known poor correlation between transcriptome and proteome data. Recent advances in microscopy now enable researchers to obtain high resolution images of ribosomes on...

Descripción completa

Detalles Bibliográficos
Autores principales: Lauria, Fabio, Tebaldi, Toma, Lunelli, Lorenzo, Struffi, Paolo, Gatto, Pamela, Pugliese, Andrea, Brigotti, Maurizio, Montanaro, Lorenzo, Ciribilli, Yari, Inga, Alberto, Quattrone, Alessandro, Sanguinetti, Guido, Viero, Gabriella
Formato: Online Artículo Texto
Lenguaje:English
Publicado: Oxford University Press 2015
Materias:
Acceso en línea:https://www.ncbi.nlm.nih.gov/pmc/articles/PMC4678843/
https://www.ncbi.nlm.nih.gov/pubmed/26240374
http://dx.doi.org/10.1093/nar/gkv781
_version_ 1782405516349145088
author Lauria, Fabio
Tebaldi, Toma
Lunelli, Lorenzo
Struffi, Paolo
Gatto, Pamela
Pugliese, Andrea
Brigotti, Maurizio
Montanaro, Lorenzo
Ciribilli, Yari
Inga, Alberto
Quattrone, Alessandro
Sanguinetti, Guido
Viero, Gabriella
author_facet Lauria, Fabio
Tebaldi, Toma
Lunelli, Lorenzo
Struffi, Paolo
Gatto, Pamela
Pugliese, Andrea
Brigotti, Maurizio
Montanaro, Lorenzo
Ciribilli, Yari
Inga, Alberto
Quattrone, Alessandro
Sanguinetti, Guido
Viero, Gabriella
author_sort Lauria, Fabio
collection PubMed
description Fluctuations in mRNA levels only partially contribute to determine variations in mRNA availability for translation, producing the well-known poor correlation between transcriptome and proteome data. Recent advances in microscopy now enable researchers to obtain high resolution images of ribosomes on transcripts, providing precious snapshots of translation in vivo. Here we propose RiboAbacus, a mathematical model that for the first time incorporates imaging data in a predictive model of transcript-specific ribosome densities and translational efficiencies. RiboAbacus uses a mechanistic model of ribosome dynamics, enabling the quantification of the relative importance of different features (such as codon usage and the 5′ ramp effect) in determining the accuracy of predictions. The model has been optimized in the human Hek-293 cell line to fit thousands of images of human polysomes obtained by atomic force microscopy, from which we could get a reference distribution of the number of ribosomes per mRNA with unmatched resolution. After validation, we applied RiboAbacus to three case studies of known transcriptome-proteome datasets for estimating the translational efficiencies, resulting in an increased correlation with corresponding proteomes. RiboAbacus is an intuitive tool that allows an immediate estimation of crucial translation properties for entire transcriptomes, based on easily obtainable transcript expression levels.
format Online
Article
Text
id pubmed-4678843
institution National Center for Biotechnology Information
language English
publishDate 2015
publisher Oxford University Press
record_format MEDLINE/PubMed
spelling pubmed-46788432015-12-16 RiboAbacus: a model trained on polyribosome images predicts ribosome density and translational efficiency from mammalian transcriptomes Lauria, Fabio Tebaldi, Toma Lunelli, Lorenzo Struffi, Paolo Gatto, Pamela Pugliese, Andrea Brigotti, Maurizio Montanaro, Lorenzo Ciribilli, Yari Inga, Alberto Quattrone, Alessandro Sanguinetti, Guido Viero, Gabriella Nucleic Acids Res Methods Online Fluctuations in mRNA levels only partially contribute to determine variations in mRNA availability for translation, producing the well-known poor correlation between transcriptome and proteome data. Recent advances in microscopy now enable researchers to obtain high resolution images of ribosomes on transcripts, providing precious snapshots of translation in vivo. Here we propose RiboAbacus, a mathematical model that for the first time incorporates imaging data in a predictive model of transcript-specific ribosome densities and translational efficiencies. RiboAbacus uses a mechanistic model of ribosome dynamics, enabling the quantification of the relative importance of different features (such as codon usage and the 5′ ramp effect) in determining the accuracy of predictions. The model has been optimized in the human Hek-293 cell line to fit thousands of images of human polysomes obtained by atomic force microscopy, from which we could get a reference distribution of the number of ribosomes per mRNA with unmatched resolution. After validation, we applied RiboAbacus to three case studies of known transcriptome-proteome datasets for estimating the translational efficiencies, resulting in an increased correlation with corresponding proteomes. RiboAbacus is an intuitive tool that allows an immediate estimation of crucial translation properties for entire transcriptomes, based on easily obtainable transcript expression levels. Oxford University Press 2015-12-15 2015-08-03 /pmc/articles/PMC4678843/ /pubmed/26240374 http://dx.doi.org/10.1093/nar/gkv781 Text en © The Author(s) 2015. Published by Oxford University Press on behalf of Nucleic Acids Research. http://creativecommons.org/licenses/by-nc/4.0/ This is an Open Access article distributed under the terms of the Creative Commons Attribution License (http://creativecommons.org/licenses/by-nc/4.0/), which permits non-commercial re-use, distribution, and reproduction in any medium, provided the original work is properly cited. For commercial re-use, please contact journals.permissions@oup.com
spellingShingle Methods Online
Lauria, Fabio
Tebaldi, Toma
Lunelli, Lorenzo
Struffi, Paolo
Gatto, Pamela
Pugliese, Andrea
Brigotti, Maurizio
Montanaro, Lorenzo
Ciribilli, Yari
Inga, Alberto
Quattrone, Alessandro
Sanguinetti, Guido
Viero, Gabriella
RiboAbacus: a model trained on polyribosome images predicts ribosome density and translational efficiency from mammalian transcriptomes
title RiboAbacus: a model trained on polyribosome images predicts ribosome density and translational efficiency from mammalian transcriptomes
title_full RiboAbacus: a model trained on polyribosome images predicts ribosome density and translational efficiency from mammalian transcriptomes
title_fullStr RiboAbacus: a model trained on polyribosome images predicts ribosome density and translational efficiency from mammalian transcriptomes
title_full_unstemmed RiboAbacus: a model trained on polyribosome images predicts ribosome density and translational efficiency from mammalian transcriptomes
title_short RiboAbacus: a model trained on polyribosome images predicts ribosome density and translational efficiency from mammalian transcriptomes
title_sort riboabacus: a model trained on polyribosome images predicts ribosome density and translational efficiency from mammalian transcriptomes
topic Methods Online
url https://www.ncbi.nlm.nih.gov/pmc/articles/PMC4678843/
https://www.ncbi.nlm.nih.gov/pubmed/26240374
http://dx.doi.org/10.1093/nar/gkv781
work_keys_str_mv AT lauriafabio riboabacusamodeltrainedonpolyribosomeimagespredictsribosomedensityandtranslationalefficiencyfrommammaliantranscriptomes
AT tebalditoma riboabacusamodeltrainedonpolyribosomeimagespredictsribosomedensityandtranslationalefficiencyfrommammaliantranscriptomes
AT lunellilorenzo riboabacusamodeltrainedonpolyribosomeimagespredictsribosomedensityandtranslationalefficiencyfrommammaliantranscriptomes
AT struffipaolo riboabacusamodeltrainedonpolyribosomeimagespredictsribosomedensityandtranslationalefficiencyfrommammaliantranscriptomes
AT gattopamela riboabacusamodeltrainedonpolyribosomeimagespredictsribosomedensityandtranslationalefficiencyfrommammaliantranscriptomes
AT puglieseandrea riboabacusamodeltrainedonpolyribosomeimagespredictsribosomedensityandtranslationalefficiencyfrommammaliantranscriptomes
AT brigottimaurizio riboabacusamodeltrainedonpolyribosomeimagespredictsribosomedensityandtranslationalefficiencyfrommammaliantranscriptomes
AT montanarolorenzo riboabacusamodeltrainedonpolyribosomeimagespredictsribosomedensityandtranslationalefficiencyfrommammaliantranscriptomes
AT ciribilliyari riboabacusamodeltrainedonpolyribosomeimagespredictsribosomedensityandtranslationalefficiencyfrommammaliantranscriptomes
AT ingaalberto riboabacusamodeltrainedonpolyribosomeimagespredictsribosomedensityandtranslationalefficiencyfrommammaliantranscriptomes
AT quattronealessandro riboabacusamodeltrainedonpolyribosomeimagespredictsribosomedensityandtranslationalefficiencyfrommammaliantranscriptomes
AT sanguinettiguido riboabacusamodeltrainedonpolyribosomeimagespredictsribosomedensityandtranslationalefficiencyfrommammaliantranscriptomes
AT vierogabriella riboabacusamodeltrainedonpolyribosomeimagespredictsribosomedensityandtranslationalefficiencyfrommammaliantranscriptomes