Cargando…
Differential Expression Analysis for RNA-Seq: An Overview of Statistical Methods and Computational Software
Deep sequencing has recently emerged as a powerful alternative to microarrays for the high-throughput profiling of gene expression. In order to account for the discrete nature of RNA sequencing data, new statistical methods and computational tools have been developed for the analysis of differential...
Autores principales: | Huang, Huei-Chung, Niu, Yi, Qin, Li-Xuan |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
Libertas Academica
2015
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC4678998/ https://www.ncbi.nlm.nih.gov/pubmed/26688660 http://dx.doi.org/10.4137/CIN.S21631 |
Ejemplares similares
-
Statistical methods on detecting differentially expressed genes for RNA-seq data
por: Chen, Zhongxue, et al.
Publicado: (2011) -
Statistical methods for identifying differentially expressed genes in RNA-Seq experiments
por: Fang, Zhide, et al.
Publicado: (2012) -
Evaluation of statistical methods for normalization and differential expression in mRNA-Seq experiments
por: Bullard, James H, et al.
Publicado: (2010) -
A survey of statistical software for analysing RNA-seq data
por: Gao, Dexiang, et al.
Publicado: (2010) -
Comparison of software packages for detecting differential expression in RNA-seq studies
por: Seyednasrollah, Fatemeh, et al.
Publicado: (2015)