Cargando…
Correcting gene expression data when neither the unwanted variation nor the factor of interest are observed
When dealing with large scale gene expression studies, observations are commonly contaminated by sources of unwanted variation such as platforms or batches. Not taking this unwanted variation into account when analyzing the data can lead to spurious associations and to missing important signals. Whe...
Autores principales: | , , |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
Oxford University Press
2016
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC4679071/ https://www.ncbi.nlm.nih.gov/pubmed/26286812 http://dx.doi.org/10.1093/biostatistics/kxv026 |
_version_ | 1782405541195153408 |
---|---|
author | Jacob, Laurent Gagnon-Bartsch, Johann A. Speed, Terence P. |
author_facet | Jacob, Laurent Gagnon-Bartsch, Johann A. Speed, Terence P. |
author_sort | Jacob, Laurent |
collection | PubMed |
description | When dealing with large scale gene expression studies, observations are commonly contaminated by sources of unwanted variation such as platforms or batches. Not taking this unwanted variation into account when analyzing the data can lead to spurious associations and to missing important signals. When the analysis is unsupervised, e.g. when the goal is to cluster the samples or to build a corrected version of the dataset—as opposed to the study of an observed factor of interest—taking unwanted variation into account can become a difficult task. The factors driving unwanted variation may be correlated with the unobserved factor of interest, so that correcting for the former can remove the latter if not done carefully. We show how negative control genes and replicate samples can be used to estimate unwanted variation in gene expression, and discuss how this information can be used to correct the expression data. The proposed methods are then evaluated on synthetic data and three gene expression datasets. They generally manage to remove unwanted variation without losing the signal of interest and compare favorably to state-of-the-art corrections. All proposed methods are implemented in the bioconductor package RUVnormalize. |
format | Online Article Text |
id | pubmed-4679071 |
institution | National Center for Biotechnology Information |
language | English |
publishDate | 2016 |
publisher | Oxford University Press |
record_format | MEDLINE/PubMed |
spelling | pubmed-46790712015-12-16 Correcting gene expression data when neither the unwanted variation nor the factor of interest are observed Jacob, Laurent Gagnon-Bartsch, Johann A. Speed, Terence P. Biostatistics Articles When dealing with large scale gene expression studies, observations are commonly contaminated by sources of unwanted variation such as platforms or batches. Not taking this unwanted variation into account when analyzing the data can lead to spurious associations and to missing important signals. When the analysis is unsupervised, e.g. when the goal is to cluster the samples or to build a corrected version of the dataset—as opposed to the study of an observed factor of interest—taking unwanted variation into account can become a difficult task. The factors driving unwanted variation may be correlated with the unobserved factor of interest, so that correcting for the former can remove the latter if not done carefully. We show how negative control genes and replicate samples can be used to estimate unwanted variation in gene expression, and discuss how this information can be used to correct the expression data. The proposed methods are then evaluated on synthetic data and three gene expression datasets. They generally manage to remove unwanted variation without losing the signal of interest and compare favorably to state-of-the-art corrections. All proposed methods are implemented in the bioconductor package RUVnormalize. Oxford University Press 2016-01 2015-08-17 /pmc/articles/PMC4679071/ /pubmed/26286812 http://dx.doi.org/10.1093/biostatistics/kxv026 Text en © The Author 2015. Published by Oxford University Press. http://creativecommons.org/licenses/by/4.0/ This is an Open Access article distributed under the terms of the Creative Commons Attribution License (http://creativecommons.org/licenses/by/4.0/), which permits unrestricted reuse, distribution, and reproduction in any medium, provided the original work is properly cited. |
spellingShingle | Articles Jacob, Laurent Gagnon-Bartsch, Johann A. Speed, Terence P. Correcting gene expression data when neither the unwanted variation nor the factor of interest are observed |
title | Correcting gene expression data when neither the unwanted variation nor the
factor of interest are observed |
title_full | Correcting gene expression data when neither the unwanted variation nor the
factor of interest are observed |
title_fullStr | Correcting gene expression data when neither the unwanted variation nor the
factor of interest are observed |
title_full_unstemmed | Correcting gene expression data when neither the unwanted variation nor the
factor of interest are observed |
title_short | Correcting gene expression data when neither the unwanted variation nor the
factor of interest are observed |
title_sort | correcting gene expression data when neither the unwanted variation nor the
factor of interest are observed |
topic | Articles |
url | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC4679071/ https://www.ncbi.nlm.nih.gov/pubmed/26286812 http://dx.doi.org/10.1093/biostatistics/kxv026 |
work_keys_str_mv | AT jacoblaurent correctinggeneexpressiondatawhenneithertheunwantedvariationnorthefactorofinterestareobserved AT gagnonbartschjohanna correctinggeneexpressiondatawhenneithertheunwantedvariationnorthefactorofinterestareobserved AT speedterencep correctinggeneexpressiondatawhenneithertheunwantedvariationnorthefactorofinterestareobserved |