Cargando…
Identification of Voxels Confounded by Venous Signals Using Resting-State fMRI Functional Connectivity Graph Community Identification
Identifying venous voxels in fMRI datasets is important to increase the specificity of fMRI analyses to microvasculature in the vicinity of the neural processes triggering the BOLD response. This is, however, difficult to achieve in particular in typical studies where magnitude images of BOLD EPI ar...
Autores principales: | Kalcher, Klaudius, Boubela, Roland N., Huf, Wolfgang, Našel, Christian, Moser, Ewald |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
Frontiers Media S.A.
2015
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC4679980/ https://www.ncbi.nlm.nih.gov/pubmed/26733787 http://dx.doi.org/10.3389/fnins.2015.00472 |
Ejemplares similares
-
Big Data Approaches for the Analysis of Large-Scale fMRI Data Using Apache Spark and GPU Processing: A Demonstration on Resting-State fMRI Data from the Human Connectome Project
por: Boubela, Roland N., et al.
Publicado: (2016) -
fMRI measurements of amygdala activation are confounded by stimulus correlated signal fluctuation in nearby veins draining distant brain regions
por: Boubela, Roland N., et al.
Publicado: (2015) -
On the generalizability of resting-state fMRI machine learning classifiers
por: Huf, Wolfgang, et al.
Publicado: (2014) -
RESCALE: Voxel-specific task-fMRI scaling using resting state fluctuation amplitude
por: Kalcher, Klaudius, et al.
Publicado: (2013) -
Beyond Noise: Using Temporal ICA to Extract Meaningful Information from High-Frequency fMRI Signal Fluctuations during Rest
por: Boubela, Roland N., et al.
Publicado: (2013)