Cargando…

Spin-orbit engineering in transition metal dichalcogenide alloy monolayers

Binary transition metal dichalcogenide monolayers share common properties such as a direct optical bandgap, spin-orbit splittings of hundreds of meV, light–matter interaction dominated by robust excitons and coupled spin-valley states. Here we demonstrate spin-orbit-engineering in Mo((1−x))W(x)Se(2)...

Descripción completa

Detalles Bibliográficos
Autores principales: Wang, Gang, Robert, Cedric, Suslu, Aslihan, Chen, Bin, Yang, Sijie, Alamdari, Sarah, Gerber, Iann C., Amand, Thierry, Marie, Xavier, Tongay, Sefaattin, Urbaszek, Bernhard
Formato: Online Artículo Texto
Lenguaje:English
Publicado: Nature Publishing Group 2015
Materias:
Acceso en línea:https://www.ncbi.nlm.nih.gov/pmc/articles/PMC4682039/
https://www.ncbi.nlm.nih.gov/pubmed/26657930
http://dx.doi.org/10.1038/ncomms10110
_version_ 1782405822964301824
author Wang, Gang
Robert, Cedric
Suslu, Aslihan
Chen, Bin
Yang, Sijie
Alamdari, Sarah
Gerber, Iann C.
Amand, Thierry
Marie, Xavier
Tongay, Sefaattin
Urbaszek, Bernhard
author_facet Wang, Gang
Robert, Cedric
Suslu, Aslihan
Chen, Bin
Yang, Sijie
Alamdari, Sarah
Gerber, Iann C.
Amand, Thierry
Marie, Xavier
Tongay, Sefaattin
Urbaszek, Bernhard
author_sort Wang, Gang
collection PubMed
description Binary transition metal dichalcogenide monolayers share common properties such as a direct optical bandgap, spin-orbit splittings of hundreds of meV, light–matter interaction dominated by robust excitons and coupled spin-valley states. Here we demonstrate spin-orbit-engineering in Mo((1−x))W(x)Se(2) alloy monolayers for optoelectronics and applications based on spin- and valley-control. We probe the impact of the tuning of the conduction band spin-orbit spin-splitting on the bright versus dark exciton population. For MoSe(2) monolayers, the photoluminescence intensity decreases as a function of temperature by an order of magnitude (4–300 K), whereas for WSe(2) we measure surprisingly an order of magnitude increase. The ternary material shows a trend between these two extreme behaviours. We also show a non-linear increase of the valley polarization as a function of tungsten concentration, where 40% tungsten incorporation is sufficient to achieve valley polarization as high as in binary WSe(2).
format Online
Article
Text
id pubmed-4682039
institution National Center for Biotechnology Information
language English
publishDate 2015
publisher Nature Publishing Group
record_format MEDLINE/PubMed
spelling pubmed-46820392015-12-29 Spin-orbit engineering in transition metal dichalcogenide alloy monolayers Wang, Gang Robert, Cedric Suslu, Aslihan Chen, Bin Yang, Sijie Alamdari, Sarah Gerber, Iann C. Amand, Thierry Marie, Xavier Tongay, Sefaattin Urbaszek, Bernhard Nat Commun Article Binary transition metal dichalcogenide monolayers share common properties such as a direct optical bandgap, spin-orbit splittings of hundreds of meV, light–matter interaction dominated by robust excitons and coupled spin-valley states. Here we demonstrate spin-orbit-engineering in Mo((1−x))W(x)Se(2) alloy monolayers for optoelectronics and applications based on spin- and valley-control. We probe the impact of the tuning of the conduction band spin-orbit spin-splitting on the bright versus dark exciton population. For MoSe(2) monolayers, the photoluminescence intensity decreases as a function of temperature by an order of magnitude (4–300 K), whereas for WSe(2) we measure surprisingly an order of magnitude increase. The ternary material shows a trend between these two extreme behaviours. We also show a non-linear increase of the valley polarization as a function of tungsten concentration, where 40% tungsten incorporation is sufficient to achieve valley polarization as high as in binary WSe(2). Nature Publishing Group 2015-12-14 /pmc/articles/PMC4682039/ /pubmed/26657930 http://dx.doi.org/10.1038/ncomms10110 Text en Copyright © 2015, Nature Publishing Group, a division of Macmillan Publishers Limited. All Rights Reserved. http://creativecommons.org/licenses/by/4.0/ This work is licensed under a Creative Commons Attribution 4.0 International License. The images or other third party material in this article are included in the article's Creative Commons license, unless indicated otherwise in the credit line; if the material is not included under the Creative Commons license, users will need to obtain permission from the license holder to reproduce the material. To view a copy of this license, visit http://creativecommons.org/licenses/by/4.0/
spellingShingle Article
Wang, Gang
Robert, Cedric
Suslu, Aslihan
Chen, Bin
Yang, Sijie
Alamdari, Sarah
Gerber, Iann C.
Amand, Thierry
Marie, Xavier
Tongay, Sefaattin
Urbaszek, Bernhard
Spin-orbit engineering in transition metal dichalcogenide alloy monolayers
title Spin-orbit engineering in transition metal dichalcogenide alloy monolayers
title_full Spin-orbit engineering in transition metal dichalcogenide alloy monolayers
title_fullStr Spin-orbit engineering in transition metal dichalcogenide alloy monolayers
title_full_unstemmed Spin-orbit engineering in transition metal dichalcogenide alloy monolayers
title_short Spin-orbit engineering in transition metal dichalcogenide alloy monolayers
title_sort spin-orbit engineering in transition metal dichalcogenide alloy monolayers
topic Article
url https://www.ncbi.nlm.nih.gov/pmc/articles/PMC4682039/
https://www.ncbi.nlm.nih.gov/pubmed/26657930
http://dx.doi.org/10.1038/ncomms10110
work_keys_str_mv AT wanggang spinorbitengineeringintransitionmetaldichalcogenidealloymonolayers
AT robertcedric spinorbitengineeringintransitionmetaldichalcogenidealloymonolayers
AT susluaslihan spinorbitengineeringintransitionmetaldichalcogenidealloymonolayers
AT chenbin spinorbitengineeringintransitionmetaldichalcogenidealloymonolayers
AT yangsijie spinorbitengineeringintransitionmetaldichalcogenidealloymonolayers
AT alamdarisarah spinorbitengineeringintransitionmetaldichalcogenidealloymonolayers
AT gerberiannc spinorbitengineeringintransitionmetaldichalcogenidealloymonolayers
AT amandthierry spinorbitengineeringintransitionmetaldichalcogenidealloymonolayers
AT mariexavier spinorbitengineeringintransitionmetaldichalcogenidealloymonolayers
AT tongaysefaattin spinorbitengineeringintransitionmetaldichalcogenidealloymonolayers
AT urbaszekbernhard spinorbitengineeringintransitionmetaldichalcogenidealloymonolayers