Cargando…
Presynaptic hyperpolarization induces a fast analogue modulation of spike-evoked transmission mediated by axonal sodium channels
In the mammalian brain, synaptic transmission usually depends on presynaptic action potentials (APs) in an all-or-none (or digital) manner. Recent studies suggest, however, that subthreshold depolarization in the presynaptic cell facilitates spike-evoked transmission, thus creating an analogue modul...
Autores principales: | , , , , , , , |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
Nature Publishing Group
2015
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC4682119/ https://www.ncbi.nlm.nih.gov/pubmed/26657943 http://dx.doi.org/10.1038/ncomms10163 |
_version_ | 1782405840314040320 |
---|---|
author | Rama, Sylvain Zbili, Mickaël Bialowas, Andrzej Fronzaroli-Molinieres, Laure Ankri, Norbert Carlier, Edmond Marra, Vincenzo Debanne, Dominique |
author_facet | Rama, Sylvain Zbili, Mickaël Bialowas, Andrzej Fronzaroli-Molinieres, Laure Ankri, Norbert Carlier, Edmond Marra, Vincenzo Debanne, Dominique |
author_sort | Rama, Sylvain |
collection | PubMed |
description | In the mammalian brain, synaptic transmission usually depends on presynaptic action potentials (APs) in an all-or-none (or digital) manner. Recent studies suggest, however, that subthreshold depolarization in the presynaptic cell facilitates spike-evoked transmission, thus creating an analogue modulation of a digital process (or analogue–digital (AD) modulation). At most synapses, this process is slow and not ideally suited for the fast dynamics of neural networks. We show here that transmission at CA3–CA3 and L5–L5 synapses can be enhanced by brief presynaptic hyperpolarization such as an inhibitory postsynaptic potential (IPSP). Using dual soma–axon patch recordings and live imaging, we find that this hyperpolarization-induced AD facilitation (h-ADF) is due to the recovery from inactivation of Nav channels controlling AP amplitude in the axon. Incorporated in a network model, h-ADF promotes both pyramidal cell synchrony and gamma oscillations. In conclusion, cortical excitatory synapses in local circuits display hyperpolarization-induced facilitation of spike-evoked synaptic transmission that promotes network synchrony. |
format | Online Article Text |
id | pubmed-4682119 |
institution | National Center for Biotechnology Information |
language | English |
publishDate | 2015 |
publisher | Nature Publishing Group |
record_format | MEDLINE/PubMed |
spelling | pubmed-46821192015-12-29 Presynaptic hyperpolarization induces a fast analogue modulation of spike-evoked transmission mediated by axonal sodium channels Rama, Sylvain Zbili, Mickaël Bialowas, Andrzej Fronzaroli-Molinieres, Laure Ankri, Norbert Carlier, Edmond Marra, Vincenzo Debanne, Dominique Nat Commun Article In the mammalian brain, synaptic transmission usually depends on presynaptic action potentials (APs) in an all-or-none (or digital) manner. Recent studies suggest, however, that subthreshold depolarization in the presynaptic cell facilitates spike-evoked transmission, thus creating an analogue modulation of a digital process (or analogue–digital (AD) modulation). At most synapses, this process is slow and not ideally suited for the fast dynamics of neural networks. We show here that transmission at CA3–CA3 and L5–L5 synapses can be enhanced by brief presynaptic hyperpolarization such as an inhibitory postsynaptic potential (IPSP). Using dual soma–axon patch recordings and live imaging, we find that this hyperpolarization-induced AD facilitation (h-ADF) is due to the recovery from inactivation of Nav channels controlling AP amplitude in the axon. Incorporated in a network model, h-ADF promotes both pyramidal cell synchrony and gamma oscillations. In conclusion, cortical excitatory synapses in local circuits display hyperpolarization-induced facilitation of spike-evoked synaptic transmission that promotes network synchrony. Nature Publishing Group 2015-12-10 /pmc/articles/PMC4682119/ /pubmed/26657943 http://dx.doi.org/10.1038/ncomms10163 Text en Copyright © 2015, Nature Publishing Group, a division of Macmillan Publishers Limited. All Rights Reserved. http://creativecommons.org/licenses/by/4.0/ This work is licensed under a Creative Commons Attribution 4.0 International License. The images or other third party material in this article are included in the article's Creative Commons license, unless indicated otherwise in the credit line; if the material is not included under the Creative Commons license, users will need to obtain permission from the license holder to reproduce the material. To view a copy of this license, visit http://creativecommons.org/licenses/by/4.0/ |
spellingShingle | Article Rama, Sylvain Zbili, Mickaël Bialowas, Andrzej Fronzaroli-Molinieres, Laure Ankri, Norbert Carlier, Edmond Marra, Vincenzo Debanne, Dominique Presynaptic hyperpolarization induces a fast analogue modulation of spike-evoked transmission mediated by axonal sodium channels |
title | Presynaptic hyperpolarization induces a fast analogue modulation of spike-evoked transmission mediated by axonal sodium channels |
title_full | Presynaptic hyperpolarization induces a fast analogue modulation of spike-evoked transmission mediated by axonal sodium channels |
title_fullStr | Presynaptic hyperpolarization induces a fast analogue modulation of spike-evoked transmission mediated by axonal sodium channels |
title_full_unstemmed | Presynaptic hyperpolarization induces a fast analogue modulation of spike-evoked transmission mediated by axonal sodium channels |
title_short | Presynaptic hyperpolarization induces a fast analogue modulation of spike-evoked transmission mediated by axonal sodium channels |
title_sort | presynaptic hyperpolarization induces a fast analogue modulation of spike-evoked transmission mediated by axonal sodium channels |
topic | Article |
url | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC4682119/ https://www.ncbi.nlm.nih.gov/pubmed/26657943 http://dx.doi.org/10.1038/ncomms10163 |
work_keys_str_mv | AT ramasylvain presynaptichyperpolarizationinducesafastanaloguemodulationofspikeevokedtransmissionmediatedbyaxonalsodiumchannels AT zbilimickael presynaptichyperpolarizationinducesafastanaloguemodulationofspikeevokedtransmissionmediatedbyaxonalsodiumchannels AT bialowasandrzej presynaptichyperpolarizationinducesafastanaloguemodulationofspikeevokedtransmissionmediatedbyaxonalsodiumchannels AT fronzarolimoliniereslaure presynaptichyperpolarizationinducesafastanaloguemodulationofspikeevokedtransmissionmediatedbyaxonalsodiumchannels AT ankrinorbert presynaptichyperpolarizationinducesafastanaloguemodulationofspikeevokedtransmissionmediatedbyaxonalsodiumchannels AT carlieredmond presynaptichyperpolarizationinducesafastanaloguemodulationofspikeevokedtransmissionmediatedbyaxonalsodiumchannels AT marravincenzo presynaptichyperpolarizationinducesafastanaloguemodulationofspikeevokedtransmissionmediatedbyaxonalsodiumchannels AT debannedominique presynaptichyperpolarizationinducesafastanaloguemodulationofspikeevokedtransmissionmediatedbyaxonalsodiumchannels |