Cargando…

Presynaptic hyperpolarization induces a fast analogue modulation of spike-evoked transmission mediated by axonal sodium channels

In the mammalian brain, synaptic transmission usually depends on presynaptic action potentials (APs) in an all-or-none (or digital) manner. Recent studies suggest, however, that subthreshold depolarization in the presynaptic cell facilitates spike-evoked transmission, thus creating an analogue modul...

Descripción completa

Detalles Bibliográficos
Autores principales: Rama, Sylvain, Zbili, Mickaël, Bialowas, Andrzej, Fronzaroli-Molinieres, Laure, Ankri, Norbert, Carlier, Edmond, Marra, Vincenzo, Debanne, Dominique
Formato: Online Artículo Texto
Lenguaje:English
Publicado: Nature Publishing Group 2015
Materias:
Acceso en línea:https://www.ncbi.nlm.nih.gov/pmc/articles/PMC4682119/
https://www.ncbi.nlm.nih.gov/pubmed/26657943
http://dx.doi.org/10.1038/ncomms10163
_version_ 1782405840314040320
author Rama, Sylvain
Zbili, Mickaël
Bialowas, Andrzej
Fronzaroli-Molinieres, Laure
Ankri, Norbert
Carlier, Edmond
Marra, Vincenzo
Debanne, Dominique
author_facet Rama, Sylvain
Zbili, Mickaël
Bialowas, Andrzej
Fronzaroli-Molinieres, Laure
Ankri, Norbert
Carlier, Edmond
Marra, Vincenzo
Debanne, Dominique
author_sort Rama, Sylvain
collection PubMed
description In the mammalian brain, synaptic transmission usually depends on presynaptic action potentials (APs) in an all-or-none (or digital) manner. Recent studies suggest, however, that subthreshold depolarization in the presynaptic cell facilitates spike-evoked transmission, thus creating an analogue modulation of a digital process (or analogue–digital (AD) modulation). At most synapses, this process is slow and not ideally suited for the fast dynamics of neural networks. We show here that transmission at CA3–CA3 and L5–L5 synapses can be enhanced by brief presynaptic hyperpolarization such as an inhibitory postsynaptic potential (IPSP). Using dual soma–axon patch recordings and live imaging, we find that this hyperpolarization-induced AD facilitation (h-ADF) is due to the recovery from inactivation of Nav channels controlling AP amplitude in the axon. Incorporated in a network model, h-ADF promotes both pyramidal cell synchrony and gamma oscillations. In conclusion, cortical excitatory synapses in local circuits display hyperpolarization-induced facilitation of spike-evoked synaptic transmission that promotes network synchrony.
format Online
Article
Text
id pubmed-4682119
institution National Center for Biotechnology Information
language English
publishDate 2015
publisher Nature Publishing Group
record_format MEDLINE/PubMed
spelling pubmed-46821192015-12-29 Presynaptic hyperpolarization induces a fast analogue modulation of spike-evoked transmission mediated by axonal sodium channels Rama, Sylvain Zbili, Mickaël Bialowas, Andrzej Fronzaroli-Molinieres, Laure Ankri, Norbert Carlier, Edmond Marra, Vincenzo Debanne, Dominique Nat Commun Article In the mammalian brain, synaptic transmission usually depends on presynaptic action potentials (APs) in an all-or-none (or digital) manner. Recent studies suggest, however, that subthreshold depolarization in the presynaptic cell facilitates spike-evoked transmission, thus creating an analogue modulation of a digital process (or analogue–digital (AD) modulation). At most synapses, this process is slow and not ideally suited for the fast dynamics of neural networks. We show here that transmission at CA3–CA3 and L5–L5 synapses can be enhanced by brief presynaptic hyperpolarization such as an inhibitory postsynaptic potential (IPSP). Using dual soma–axon patch recordings and live imaging, we find that this hyperpolarization-induced AD facilitation (h-ADF) is due to the recovery from inactivation of Nav channels controlling AP amplitude in the axon. Incorporated in a network model, h-ADF promotes both pyramidal cell synchrony and gamma oscillations. In conclusion, cortical excitatory synapses in local circuits display hyperpolarization-induced facilitation of spike-evoked synaptic transmission that promotes network synchrony. Nature Publishing Group 2015-12-10 /pmc/articles/PMC4682119/ /pubmed/26657943 http://dx.doi.org/10.1038/ncomms10163 Text en Copyright © 2015, Nature Publishing Group, a division of Macmillan Publishers Limited. All Rights Reserved. http://creativecommons.org/licenses/by/4.0/ This work is licensed under a Creative Commons Attribution 4.0 International License. The images or other third party material in this article are included in the article's Creative Commons license, unless indicated otherwise in the credit line; if the material is not included under the Creative Commons license, users will need to obtain permission from the license holder to reproduce the material. To view a copy of this license, visit http://creativecommons.org/licenses/by/4.0/
spellingShingle Article
Rama, Sylvain
Zbili, Mickaël
Bialowas, Andrzej
Fronzaroli-Molinieres, Laure
Ankri, Norbert
Carlier, Edmond
Marra, Vincenzo
Debanne, Dominique
Presynaptic hyperpolarization induces a fast analogue modulation of spike-evoked transmission mediated by axonal sodium channels
title Presynaptic hyperpolarization induces a fast analogue modulation of spike-evoked transmission mediated by axonal sodium channels
title_full Presynaptic hyperpolarization induces a fast analogue modulation of spike-evoked transmission mediated by axonal sodium channels
title_fullStr Presynaptic hyperpolarization induces a fast analogue modulation of spike-evoked transmission mediated by axonal sodium channels
title_full_unstemmed Presynaptic hyperpolarization induces a fast analogue modulation of spike-evoked transmission mediated by axonal sodium channels
title_short Presynaptic hyperpolarization induces a fast analogue modulation of spike-evoked transmission mediated by axonal sodium channels
title_sort presynaptic hyperpolarization induces a fast analogue modulation of spike-evoked transmission mediated by axonal sodium channels
topic Article
url https://www.ncbi.nlm.nih.gov/pmc/articles/PMC4682119/
https://www.ncbi.nlm.nih.gov/pubmed/26657943
http://dx.doi.org/10.1038/ncomms10163
work_keys_str_mv AT ramasylvain presynaptichyperpolarizationinducesafastanaloguemodulationofspikeevokedtransmissionmediatedbyaxonalsodiumchannels
AT zbilimickael presynaptichyperpolarizationinducesafastanaloguemodulationofspikeevokedtransmissionmediatedbyaxonalsodiumchannels
AT bialowasandrzej presynaptichyperpolarizationinducesafastanaloguemodulationofspikeevokedtransmissionmediatedbyaxonalsodiumchannels
AT fronzarolimoliniereslaure presynaptichyperpolarizationinducesafastanaloguemodulationofspikeevokedtransmissionmediatedbyaxonalsodiumchannels
AT ankrinorbert presynaptichyperpolarizationinducesafastanaloguemodulationofspikeevokedtransmissionmediatedbyaxonalsodiumchannels
AT carlieredmond presynaptichyperpolarizationinducesafastanaloguemodulationofspikeevokedtransmissionmediatedbyaxonalsodiumchannels
AT marravincenzo presynaptichyperpolarizationinducesafastanaloguemodulationofspikeevokedtransmissionmediatedbyaxonalsodiumchannels
AT debannedominique presynaptichyperpolarizationinducesafastanaloguemodulationofspikeevokedtransmissionmediatedbyaxonalsodiumchannels