Cargando…

Quantum correlations which imply causation

In ordinary, non-relativistic, quantum physics, time enters only as a parameter and not as an observable: a state of a physical system is specified at a given time and then evolved according to the prescribed dynamics. While the state can, and usually does, extend across all space, it is only define...

Descripción completa

Detalles Bibliográficos
Autores principales: Fitzsimons, Joseph F., Jones, Jonathan A., Vedral, Vlatko
Formato: Online Artículo Texto
Lenguaje:English
Publicado: Nature Publishing Group 2015
Materias:
Acceso en línea:https://www.ncbi.nlm.nih.gov/pmc/articles/PMC4682148/
https://www.ncbi.nlm.nih.gov/pubmed/26675807
http://dx.doi.org/10.1038/srep18281
Descripción
Sumario:In ordinary, non-relativistic, quantum physics, time enters only as a parameter and not as an observable: a state of a physical system is specified at a given time and then evolved according to the prescribed dynamics. While the state can, and usually does, extend across all space, it is only defined at one instant of time. Here we ask what would happen if we defined the notion of the quantum density matrix for multiple spatial and temporal measurements. We introduce the concept of a pseudo-density matrix (PDM) which treats space and time indiscriminately. This matrix in general fails to be positive for measurement events which do not occur simultaneously, motivating us to define a measure of causality that discriminates between spatial and temporal correlations. Important properties of this measure, such as monotonicity under local operations, are proved. Two qubit NMR experiments are presented that illustrate how a temporal pseudo-density matrix approaches a genuinely allowed density matrix as the amount of decoherence is increased between two consecutive measurements.