Cargando…
Inference of gene interaction networks using conserved subsequential patterns from multiple time course gene expression datasets
MOTIVATION: Deciphering gene interaction networks (GINs) from time-course gene expression (TCGx) data is highly valuable to understand gene behaviors (e.g., activation, inhibition, time-lagged causality) at the system level. Existing methods usually use a global or local proximity measure to infer G...
Autores principales: | Liu, Qian, Song, Renhua, Li, Jinyan |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
BioMed Central
2015
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC4682423/ https://www.ncbi.nlm.nih.gov/pubmed/26681650 http://dx.doi.org/10.1186/1471-2164-16-S12-S4 |
Ejemplares similares
-
Boolean Monadic Recursive Schemes as a Logical Characterization of the Subsequential Functions
por: Bhaskar, Siddharth, et al.
Publicado: (2020) -
A group LASSO-based method for robustly inferring gene regulatory networks from multiple time-course datasets
por: Liu, Li-Zhi, et al.
Publicado: (2014) -
Recursive regularization for inferring gene networks from time-course gene expression profiles
por: Shimamura, Teppei, et al.
Publicado: (2009) -
Inferring cluster-based networks from differently stimulated multiple time-course gene expression data
por: Shiraishi, Yuichi, et al.
Publicado: (2010) -
Integrating Multiple Interaction Networks for Gene Function Inference
por: Zhang, Jingpu, et al.
Publicado: (2018)