Cargando…
Positive-unlabeled learning for the prediction of conformational B-cell epitopes
BACKGROUND: The incomplete ground truth of training data of B-cell epitopes is a demanding issue in computational epitope prediction. The challenge is that only a small fraction of the surface residues of an antigen are confirmed as antigenic residues (positive training data); the remaining residues...
Autores principales: | Ren, Jing, Liu, Qian, Ellis, John, Li, Jinyan |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
BioMed Central
2015
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC4682424/ https://www.ncbi.nlm.nih.gov/pubmed/26681157 http://dx.doi.org/10.1186/1471-2105-16-S18-S12 |
Ejemplares similares
-
Tertiary structure-based prediction of conformational B-cell epitopes through B factors
por: Ren, Jing, et al.
Publicado: (2014) -
Staged heterogeneity learning to identify conformational B-cell epitopes from antigen sequences
por: Ren, Jing, et al.
Publicado: (2017) -
Positive-Unlabeled Learning for Pupylation Sites Prediction
por: Jiang, Ming, et al.
Publicado: (2016) -
DDI-PULearn: a positive-unlabeled learning method for large-scale prediction of drug-drug interactions
por: Zheng, Yi, et al.
Publicado: (2019) -
Positive-unlabeled learning for disease gene identification
por: Yang, Peng, et al.
Publicado: (2012)