Cargando…

EPIMIC: A Simple Homemade Computer Program for Real-Time EPIdemiological Surveillance and Alert Based on MICrobiological Data

BACKGROUND AND AIMS: Infectious diseases (IDs) are major causes of morbidity and mortality and their surveillance is critical. In 2002, we implemented a simple and versatile homemade tool, named EPIMIC, for the real-time systematic automated surveillance of IDs at Marseille university hospitals, bas...

Descripción completa

Detalles Bibliográficos
Autores principales: Colson, Philippe, Rolain, Jean-Marc, Abat, Cédric, Charrel, Rémi, Fournier, Pierre-Edouard, Raoult, Didier
Formato: Online Artículo Texto
Lenguaje:English
Publicado: Public Library of Science 2015
Materias:
Acceso en línea:https://www.ncbi.nlm.nih.gov/pmc/articles/PMC4682850/
https://www.ncbi.nlm.nih.gov/pubmed/26658293
http://dx.doi.org/10.1371/journal.pone.0144178
Descripción
Sumario:BACKGROUND AND AIMS: Infectious diseases (IDs) are major causes of morbidity and mortality and their surveillance is critical. In 2002, we implemented a simple and versatile homemade tool, named EPIMIC, for the real-time systematic automated surveillance of IDs at Marseille university hospitals, based on the data from our clinical microbiology laboratory, including clinical samples, tests and diagnoses. METHODS: This tool was specifically designed to detect abnormal events as IDs are rarely predicted and modeled. EPIMIC operates using Microsoft Excel software and requires no particular computer skills or resources. An abnormal event corresponds to an increase above, or a decrease below threshold values calculated based on the mean of historical data plus or minus 2 standard deviations, respectively. RESULTS: Between November 2002 and October 2013 (11 years), 293 items were surveyed weekly, including 38 clinical samples, 86 pathogens, 79 diagnosis tests, and 39 antibacterial resistance patterns. The mean duration of surveillance was 7.6 years (range, 1 month-10.9 years). A total of 108,427 Microsoft Excel file cells were filled with counts of clinical samples, and 110,017 cells were filled with counts of diagnoses. A total of 1,390,689 samples were analyzed. Among them, 172,180 were found to be positive for a pathogen. EPIMIC generated a mean number of 0.5 alert/week on abnormal events. CONCLUSIONS: EPIMIC proved to be efficient for real-time automated laboratory-based surveillance and alerting at our university hospital clinical microbiology laboratory-scale. It is freely downloadable from the following URL: http://www.mediterranee-infection.com/article.php?larub=157&titre=bulletin-epidemiologique (last accessed: 20/11/2015).