Cargando…
Light Inhibition of Shoot Regeneration Is Regulated by Endogenous Abscisic Acid Level in Calli Derived from Immature Barley Embryos
Shoot regeneration in calli derived from immature barley embryos is regulated by light conditions during the callus-induction period. Barley cultivars Kanto Nijo-5 (KN5) and K-3 (K3) showed lower efficiency of shoot regeneration in a 16-h photoperiod during callus-induction than those in continuous...
Autores principales: | , , , |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
Public Library of Science
2015
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC4682856/ https://www.ncbi.nlm.nih.gov/pubmed/26670930 http://dx.doi.org/10.1371/journal.pone.0145242 |
_version_ | 1782405936479993856 |
---|---|
author | Rikiishi, Kazuhide Matsuura, Takakazu Ikeda, Yoko Maekawa, Masahiko |
author_facet | Rikiishi, Kazuhide Matsuura, Takakazu Ikeda, Yoko Maekawa, Masahiko |
author_sort | Rikiishi, Kazuhide |
collection | PubMed |
description | Shoot regeneration in calli derived from immature barley embryos is regulated by light conditions during the callus-induction period. Barley cultivars Kanto Nijo-5 (KN5) and K-3 (K3) showed lower efficiency of shoot regeneration in a 16-h photoperiod during callus-induction than those in continuous darkness, whereas shoot regeneration was enhanced in cultures under a 16-h photoperiod in Golden Promise (GP) and Lenins (LN). These cultivars were classified as photo-inhibition type (KN5 and K3) or photo-induction type (GP and LN) according to their response to light. Contents of endogenous plant hormones were determined in calli cultured under a 16-h photoperiod and continuous darkness. In photo-inhibition type, higher accumulation of abscisic acid (ABA) was detected in calli cultured under a 16-h photoperiod, whereas calli showed lower levels of endogenous ABA in continuous darkness. However, cultivars of photo-induction type showed lower levels of ABA in calli cultured under both light conditions, similarly to photo-inhibition type in continuous darkness. Exogenous ABA inhibited the callus growth and shoot regeneration independent of light conditions in all cultivars. In photo-inhibition type, lower levels of endogenous ABA induced by ABA biosynthesis inhibitor, fluridone, reduced the photo-inhibition of shoot regeneration. Expression of ABA biosynthesis gene, HvNCED1, in calli was regulated by the light conditions. Higher expression was observed in calli cultured under a 16-h photoperiod. These results indicate that ABA biosynthesis could be activated through the higher expression of HvNCED1 in a 16-h photoperiod and that the higher accumulations of ABA inhibit shoot regeneration in the photo-inhibition type cultivars. |
format | Online Article Text |
id | pubmed-4682856 |
institution | National Center for Biotechnology Information |
language | English |
publishDate | 2015 |
publisher | Public Library of Science |
record_format | MEDLINE/PubMed |
spelling | pubmed-46828562015-12-31 Light Inhibition of Shoot Regeneration Is Regulated by Endogenous Abscisic Acid Level in Calli Derived from Immature Barley Embryos Rikiishi, Kazuhide Matsuura, Takakazu Ikeda, Yoko Maekawa, Masahiko PLoS One Research Article Shoot regeneration in calli derived from immature barley embryos is regulated by light conditions during the callus-induction period. Barley cultivars Kanto Nijo-5 (KN5) and K-3 (K3) showed lower efficiency of shoot regeneration in a 16-h photoperiod during callus-induction than those in continuous darkness, whereas shoot regeneration was enhanced in cultures under a 16-h photoperiod in Golden Promise (GP) and Lenins (LN). These cultivars were classified as photo-inhibition type (KN5 and K3) or photo-induction type (GP and LN) according to their response to light. Contents of endogenous plant hormones were determined in calli cultured under a 16-h photoperiod and continuous darkness. In photo-inhibition type, higher accumulation of abscisic acid (ABA) was detected in calli cultured under a 16-h photoperiod, whereas calli showed lower levels of endogenous ABA in continuous darkness. However, cultivars of photo-induction type showed lower levels of ABA in calli cultured under both light conditions, similarly to photo-inhibition type in continuous darkness. Exogenous ABA inhibited the callus growth and shoot regeneration independent of light conditions in all cultivars. In photo-inhibition type, lower levels of endogenous ABA induced by ABA biosynthesis inhibitor, fluridone, reduced the photo-inhibition of shoot regeneration. Expression of ABA biosynthesis gene, HvNCED1, in calli was regulated by the light conditions. Higher expression was observed in calli cultured under a 16-h photoperiod. These results indicate that ABA biosynthesis could be activated through the higher expression of HvNCED1 in a 16-h photoperiod and that the higher accumulations of ABA inhibit shoot regeneration in the photo-inhibition type cultivars. Public Library of Science 2015-12-15 /pmc/articles/PMC4682856/ /pubmed/26670930 http://dx.doi.org/10.1371/journal.pone.0145242 Text en © 2015 Rikiishi et al http://creativecommons.org/licenses/by/4.0/ This is an open-access article distributed under the terms of the Creative Commons Attribution License, which permits unrestricted use, distribution, and reproduction in any medium, provided the original author and source are properly credited. |
spellingShingle | Research Article Rikiishi, Kazuhide Matsuura, Takakazu Ikeda, Yoko Maekawa, Masahiko Light Inhibition of Shoot Regeneration Is Regulated by Endogenous Abscisic Acid Level in Calli Derived from Immature Barley Embryos |
title | Light Inhibition of Shoot Regeneration Is Regulated by Endogenous Abscisic Acid Level in Calli Derived from Immature Barley Embryos |
title_full | Light Inhibition of Shoot Regeneration Is Regulated by Endogenous Abscisic Acid Level in Calli Derived from Immature Barley Embryos |
title_fullStr | Light Inhibition of Shoot Regeneration Is Regulated by Endogenous Abscisic Acid Level in Calli Derived from Immature Barley Embryos |
title_full_unstemmed | Light Inhibition of Shoot Regeneration Is Regulated by Endogenous Abscisic Acid Level in Calli Derived from Immature Barley Embryos |
title_short | Light Inhibition of Shoot Regeneration Is Regulated by Endogenous Abscisic Acid Level in Calli Derived from Immature Barley Embryos |
title_sort | light inhibition of shoot regeneration is regulated by endogenous abscisic acid level in calli derived from immature barley embryos |
topic | Research Article |
url | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC4682856/ https://www.ncbi.nlm.nih.gov/pubmed/26670930 http://dx.doi.org/10.1371/journal.pone.0145242 |
work_keys_str_mv | AT rikiishikazuhide lightinhibitionofshootregenerationisregulatedbyendogenousabscisicacidlevelincalliderivedfromimmaturebarleyembryos AT matsuuratakakazu lightinhibitionofshootregenerationisregulatedbyendogenousabscisicacidlevelincalliderivedfromimmaturebarleyembryos AT ikedayoko lightinhibitionofshootregenerationisregulatedbyendogenousabscisicacidlevelincalliderivedfromimmaturebarleyembryos AT maekawamasahiko lightinhibitionofshootregenerationisregulatedbyendogenousabscisicacidlevelincalliderivedfromimmaturebarleyembryos |