Cargando…
SPOTting Model Parameters Using a Ready-Made Python Package
The choice for specific parameter estimation methods is often more dependent on its availability than its performance. We developed SPOTPY (Statistical Parameter Optimization Tool), an open source python package containing a comprehensive set of methods typically used to calibrate, analyze and optim...
Autores principales: | , , , |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
Public Library of Science
2015
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC4682995/ https://www.ncbi.nlm.nih.gov/pubmed/26680783 http://dx.doi.org/10.1371/journal.pone.0145180 |
_version_ | 1782405957723095040 |
---|---|
author | Houska, Tobias Kraft, Philipp Chamorro-Chavez, Alejandro Breuer, Lutz |
author_facet | Houska, Tobias Kraft, Philipp Chamorro-Chavez, Alejandro Breuer, Lutz |
author_sort | Houska, Tobias |
collection | PubMed |
description | The choice for specific parameter estimation methods is often more dependent on its availability than its performance. We developed SPOTPY (Statistical Parameter Optimization Tool), an open source python package containing a comprehensive set of methods typically used to calibrate, analyze and optimize parameters for a wide range of ecological models. SPOTPY currently contains eight widely used algorithms, 11 objective functions, and can sample from eight parameter distributions. SPOTPY has a model-independent structure and can be run in parallel from the workstation to large computation clusters using the Message Passing Interface (MPI). We tested SPOTPY in five different case studies to parameterize the Rosenbrock, Griewank and Ackley functions, a one-dimensional physically based soil moisture routine, where we searched for parameters of the van Genuchten-Mualem function and a calibration of a biogeochemistry model with different objective functions. The case studies reveal that the implemented SPOTPY methods can be used for any model with just a minimal amount of code for maximal power of parameter optimization. They further show the benefit of having one package at hand that includes number of well performing parameter search methods, since not every case study can be solved sufficiently with every algorithm or every objective function. |
format | Online Article Text |
id | pubmed-4682995 |
institution | National Center for Biotechnology Information |
language | English |
publishDate | 2015 |
publisher | Public Library of Science |
record_format | MEDLINE/PubMed |
spelling | pubmed-46829952015-12-31 SPOTting Model Parameters Using a Ready-Made Python Package Houska, Tobias Kraft, Philipp Chamorro-Chavez, Alejandro Breuer, Lutz PLoS One Research Article The choice for specific parameter estimation methods is often more dependent on its availability than its performance. We developed SPOTPY (Statistical Parameter Optimization Tool), an open source python package containing a comprehensive set of methods typically used to calibrate, analyze and optimize parameters for a wide range of ecological models. SPOTPY currently contains eight widely used algorithms, 11 objective functions, and can sample from eight parameter distributions. SPOTPY has a model-independent structure and can be run in parallel from the workstation to large computation clusters using the Message Passing Interface (MPI). We tested SPOTPY in five different case studies to parameterize the Rosenbrock, Griewank and Ackley functions, a one-dimensional physically based soil moisture routine, where we searched for parameters of the van Genuchten-Mualem function and a calibration of a biogeochemistry model with different objective functions. The case studies reveal that the implemented SPOTPY methods can be used for any model with just a minimal amount of code for maximal power of parameter optimization. They further show the benefit of having one package at hand that includes number of well performing parameter search methods, since not every case study can be solved sufficiently with every algorithm or every objective function. Public Library of Science 2015-12-17 /pmc/articles/PMC4682995/ /pubmed/26680783 http://dx.doi.org/10.1371/journal.pone.0145180 Text en © 2015 Houska et al http://creativecommons.org/licenses/by/4.0/ This is an open-access article distributed under the terms of the Creative Commons Attribution License, which permits unrestricted use, distribution, and reproduction in any medium, provided the original author and source are properly credited. |
spellingShingle | Research Article Houska, Tobias Kraft, Philipp Chamorro-Chavez, Alejandro Breuer, Lutz SPOTting Model Parameters Using a Ready-Made Python Package |
title | SPOTting Model Parameters Using a Ready-Made Python Package |
title_full | SPOTting Model Parameters Using a Ready-Made Python Package |
title_fullStr | SPOTting Model Parameters Using a Ready-Made Python Package |
title_full_unstemmed | SPOTting Model Parameters Using a Ready-Made Python Package |
title_short | SPOTting Model Parameters Using a Ready-Made Python Package |
title_sort | spotting model parameters using a ready-made python package |
topic | Research Article |
url | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC4682995/ https://www.ncbi.nlm.nih.gov/pubmed/26680783 http://dx.doi.org/10.1371/journal.pone.0145180 |
work_keys_str_mv | AT houskatobias spottingmodelparametersusingareadymadepythonpackage AT kraftphilipp spottingmodelparametersusingareadymadepythonpackage AT chamorrochavezalejandro spottingmodelparametersusingareadymadepythonpackage AT breuerlutz spottingmodelparametersusingareadymadepythonpackage |