Cargando…
Ultrafast optical-ultrasonic system and miniaturized catheter for imaging and characterizing atherosclerotic plaques in vivo
Atherosclerotic coronary artery disease (CAD) is the number one cause of death worldwide. The majority of CAD-induced deaths are due to the rupture of vulnerable plaques. Accurate assessment of plaques is crucial to optimize treatment and prevent death in patients with CAD. Current diagnostic techni...
Autores principales: | , , , , , , , , , , |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
Nature Publishing Group
2015
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC4683418/ https://www.ncbi.nlm.nih.gov/pubmed/26678300 http://dx.doi.org/10.1038/srep18406 |
_version_ | 1782406017266483200 |
---|---|
author | Li, Jiawen Ma, Teng Mohar, Dilbahar Steward, Earl Yu, Mingyue Piao, Zhonglie He, Youmin Shung, K. Kirk Zhou, Qifa Patel, Pranav M. Chen, Zhongping |
author_facet | Li, Jiawen Ma, Teng Mohar, Dilbahar Steward, Earl Yu, Mingyue Piao, Zhonglie He, Youmin Shung, K. Kirk Zhou, Qifa Patel, Pranav M. Chen, Zhongping |
author_sort | Li, Jiawen |
collection | PubMed |
description | Atherosclerotic coronary artery disease (CAD) is the number one cause of death worldwide. The majority of CAD-induced deaths are due to the rupture of vulnerable plaques. Accurate assessment of plaques is crucial to optimize treatment and prevent death in patients with CAD. Current diagnostic techniques are often limited by either spatial resolution or penetration depth. Several studies have proved that the combined use of optical and ultrasonic imaging techniques increase diagnostic accuracy of vulnerable plaques. Here, we introduce an ultrafast optical-ultrasonic dual-modality imaging system and flexible miniaturized catheter, which enables the translation of this technology into clinical practice. This system can perform simultaneous optical coherence tomography (OCT)-intravascular ultrasound (IVUS) imaging at 72 frames per second safely in vivo, i.e., visualizing a 72 mm-long artery in 4 seconds. Results obtained in atherosclerotic rabbits in vivo and human coronary artery segments show that this ultrafast technique can rapidly provide volumetric mapping of plaques and clearly identify vulnerable plaques. By providing ultrafast imaging of arteries with high resolution and deep penetration depth simultaneously, this hybrid IVUS-OCT technology opens new and safe opportunities to evaluate in real-time the risk posed by plaques, detect vulnerable plaques, and optimize treatment decisions. |
format | Online Article Text |
id | pubmed-4683418 |
institution | National Center for Biotechnology Information |
language | English |
publishDate | 2015 |
publisher | Nature Publishing Group |
record_format | MEDLINE/PubMed |
spelling | pubmed-46834182015-12-21 Ultrafast optical-ultrasonic system and miniaturized catheter for imaging and characterizing atherosclerotic plaques in vivo Li, Jiawen Ma, Teng Mohar, Dilbahar Steward, Earl Yu, Mingyue Piao, Zhonglie He, Youmin Shung, K. Kirk Zhou, Qifa Patel, Pranav M. Chen, Zhongping Sci Rep Article Atherosclerotic coronary artery disease (CAD) is the number one cause of death worldwide. The majority of CAD-induced deaths are due to the rupture of vulnerable plaques. Accurate assessment of plaques is crucial to optimize treatment and prevent death in patients with CAD. Current diagnostic techniques are often limited by either spatial resolution or penetration depth. Several studies have proved that the combined use of optical and ultrasonic imaging techniques increase diagnostic accuracy of vulnerable plaques. Here, we introduce an ultrafast optical-ultrasonic dual-modality imaging system and flexible miniaturized catheter, which enables the translation of this technology into clinical practice. This system can perform simultaneous optical coherence tomography (OCT)-intravascular ultrasound (IVUS) imaging at 72 frames per second safely in vivo, i.e., visualizing a 72 mm-long artery in 4 seconds. Results obtained in atherosclerotic rabbits in vivo and human coronary artery segments show that this ultrafast technique can rapidly provide volumetric mapping of plaques and clearly identify vulnerable plaques. By providing ultrafast imaging of arteries with high resolution and deep penetration depth simultaneously, this hybrid IVUS-OCT technology opens new and safe opportunities to evaluate in real-time the risk posed by plaques, detect vulnerable plaques, and optimize treatment decisions. Nature Publishing Group 2015-12-18 /pmc/articles/PMC4683418/ /pubmed/26678300 http://dx.doi.org/10.1038/srep18406 Text en Copyright © 2015, Macmillan Publishers Limited http://creativecommons.org/licenses/by/4.0/ This work is licensed under a Creative Commons Attribution 4.0 International License. The images or other third party material in this article are included in the article’s Creative Commons license, unless indicated otherwise in the credit line; if the material is not included under the Creative Commons license, users will need to obtain permission from the license holder to reproduce the material. To view a copy of this license, visit http://creativecommons.org/licenses/by/4.0/ |
spellingShingle | Article Li, Jiawen Ma, Teng Mohar, Dilbahar Steward, Earl Yu, Mingyue Piao, Zhonglie He, Youmin Shung, K. Kirk Zhou, Qifa Patel, Pranav M. Chen, Zhongping Ultrafast optical-ultrasonic system and miniaturized catheter for imaging and characterizing atherosclerotic plaques in vivo |
title | Ultrafast optical-ultrasonic system and miniaturized catheter for imaging and characterizing atherosclerotic plaques in vivo |
title_full | Ultrafast optical-ultrasonic system and miniaturized catheter for imaging and characterizing atherosclerotic plaques in vivo |
title_fullStr | Ultrafast optical-ultrasonic system and miniaturized catheter for imaging and characterizing atherosclerotic plaques in vivo |
title_full_unstemmed | Ultrafast optical-ultrasonic system and miniaturized catheter for imaging and characterizing atherosclerotic plaques in vivo |
title_short | Ultrafast optical-ultrasonic system and miniaturized catheter for imaging and characterizing atherosclerotic plaques in vivo |
title_sort | ultrafast optical-ultrasonic system and miniaturized catheter for imaging and characterizing atherosclerotic plaques in vivo |
topic | Article |
url | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC4683418/ https://www.ncbi.nlm.nih.gov/pubmed/26678300 http://dx.doi.org/10.1038/srep18406 |
work_keys_str_mv | AT lijiawen ultrafastopticalultrasonicsystemandminiaturizedcatheterforimagingandcharacterizingatheroscleroticplaquesinvivo AT mateng ultrafastopticalultrasonicsystemandminiaturizedcatheterforimagingandcharacterizingatheroscleroticplaquesinvivo AT mohardilbahar ultrafastopticalultrasonicsystemandminiaturizedcatheterforimagingandcharacterizingatheroscleroticplaquesinvivo AT stewardearl ultrafastopticalultrasonicsystemandminiaturizedcatheterforimagingandcharacterizingatheroscleroticplaquesinvivo AT yumingyue ultrafastopticalultrasonicsystemandminiaturizedcatheterforimagingandcharacterizingatheroscleroticplaquesinvivo AT piaozhonglie ultrafastopticalultrasonicsystemandminiaturizedcatheterforimagingandcharacterizingatheroscleroticplaquesinvivo AT heyoumin ultrafastopticalultrasonicsystemandminiaturizedcatheterforimagingandcharacterizingatheroscleroticplaquesinvivo AT shungkkirk ultrafastopticalultrasonicsystemandminiaturizedcatheterforimagingandcharacterizingatheroscleroticplaquesinvivo AT zhouqifa ultrafastopticalultrasonicsystemandminiaturizedcatheterforimagingandcharacterizingatheroscleroticplaquesinvivo AT patelpranavm ultrafastopticalultrasonicsystemandminiaturizedcatheterforimagingandcharacterizingatheroscleroticplaquesinvivo AT chenzhongping ultrafastopticalultrasonicsystemandminiaturizedcatheterforimagingandcharacterizingatheroscleroticplaquesinvivo |