Cargando…

Secretome analysis of chickpea reveals dynamic extracellular remodeling and identifies a Bet v1-like protein, CaRRP1 that participates in stress response

Secreted proteins maintain cell structure and biogenesis besides acting in signaling events crucial for cellular homeostasis during stress adaptation. To understand the underlying mechanism of stress-responsive secretion, the dehydration-responsive secretome was developed from suspension-cultured ce...

Descripción completa

Detalles Bibliográficos
Autores principales: Gupta, Sonika, Wardhan, Vijay, Kumar, Amit, Rathi, Divya, Pandey, Aarti, Chakraborty, Subhra, Chakraborty, Niranjan
Formato: Online Artículo Texto
Lenguaje:English
Publicado: Nature Publishing Group 2015
Materias:
Acceso en línea:https://www.ncbi.nlm.nih.gov/pmc/articles/PMC4683448/
https://www.ncbi.nlm.nih.gov/pubmed/26678784
http://dx.doi.org/10.1038/srep18427
Descripción
Sumario:Secreted proteins maintain cell structure and biogenesis besides acting in signaling events crucial for cellular homeostasis during stress adaptation. To understand the underlying mechanism of stress-responsive secretion, the dehydration-responsive secretome was developed from suspension-cultured cells of chickpea. Cell viability of the suspension culture remained unaltered until 96 h, which gradually declined at later stages of dehydration. Proteomic analysis led to the identification of 215 differentially regulated proteins, involved in a variety of cellular functions that include metabolism, cell defence, and signal transduction suggesting their concerted role in stress adaptation. One-third of the secreted proteins were devoid of N-terminal secretion signals suggesting a non-classical secretory route. Screening of the secretome identified a leaderless Bet v 1-like protein, designated CaRRP1, the export of which was inhibited by brefeldin A. We investigated the gene structure and genomic organization and demonstrated that CaRRP1 may be involved in stress response. Its expression was positively associated with abiotic and biotic stresses. CaRRP1 could complement the aberrant growth phenotype of yeast mutant, deficient in vesicular transport, indicating a partial overlap of protein secretion and stress response. Our study provides the most comprehensive analysis of dehydration-responsive secretome and the complex metabolic network operating in plant extracellular space.