Cargando…

Tunable Optical Nanoantennas Incorporating Bowtie Nanoantenna Arrays with Stimuli-Responsive Polymer

We report on a temperature-responsive tunable plasmonic device that incorporates coupled bowtie nanoantenna arrays (BNAs) with a submicron-thick, thermosensitive hydrogel coating. The coupled plasmonic nanoparticles provide an intrinsically higher field enhancement than conventional individual nanop...

Descripción completa

Detalles Bibliográficos
Autores principales: Wang, Qiugu, Liu, Longju, Wang, Yifei, Liu, Peng, Jiang, Huawei, Xu, Zhen, Ma, Zhuo, Oren, Seval, Chow, Edmond K. C., Lu, Meng, Dong, Liang
Formato: Online Artículo Texto
Lenguaje:English
Publicado: Nature Publishing Group 2015
Materias:
Acceso en línea:https://www.ncbi.nlm.nih.gov/pmc/articles/PMC4683518/
https://www.ncbi.nlm.nih.gov/pubmed/26681478
http://dx.doi.org/10.1038/srep18567
_version_ 1782406040077205504
author Wang, Qiugu
Liu, Longju
Wang, Yifei
Liu, Peng
Jiang, Huawei
Xu, Zhen
Ma, Zhuo
Oren, Seval
Chow, Edmond K. C.
Lu, Meng
Dong, Liang
author_facet Wang, Qiugu
Liu, Longju
Wang, Yifei
Liu, Peng
Jiang, Huawei
Xu, Zhen
Ma, Zhuo
Oren, Seval
Chow, Edmond K. C.
Lu, Meng
Dong, Liang
author_sort Wang, Qiugu
collection PubMed
description We report on a temperature-responsive tunable plasmonic device that incorporates coupled bowtie nanoantenna arrays (BNAs) with a submicron-thick, thermosensitive hydrogel coating. The coupled plasmonic nanoparticles provide an intrinsically higher field enhancement than conventional individual nanoparticles. The favorable scaling of plasmonic dimers at the nanometer scale and ionic diffusion at the submicron scale is leveraged to achieve strong optical resonance and rapid hydrogel response, respectively. We demonstrate that the hydrogel-coated BNAs are able to sense environmental temperature variations. The phase transition of hydrogel leads to 16.2 nm of resonant wavelength shift for the hydrogel-coated BNAs, whereas only 3 nm for the uncoated counterpart. The response time of the device to temperature variations is only 250 ms, due to the small hydrogel thickness at the submicron scale. The demonstration of the ability of the device to tune its optical resonance in response to an environmental stimulus (here, temperature) suggests a possibility of making many other tunable plasmonic devices through the incorporation of coupled plasmonic nanostructures and various environmental-responsive hydrogels.
format Online
Article
Text
id pubmed-4683518
institution National Center for Biotechnology Information
language English
publishDate 2015
publisher Nature Publishing Group
record_format MEDLINE/PubMed
spelling pubmed-46835182015-12-21 Tunable Optical Nanoantennas Incorporating Bowtie Nanoantenna Arrays with Stimuli-Responsive Polymer Wang, Qiugu Liu, Longju Wang, Yifei Liu, Peng Jiang, Huawei Xu, Zhen Ma, Zhuo Oren, Seval Chow, Edmond K. C. Lu, Meng Dong, Liang Sci Rep Article We report on a temperature-responsive tunable plasmonic device that incorporates coupled bowtie nanoantenna arrays (BNAs) with a submicron-thick, thermosensitive hydrogel coating. The coupled plasmonic nanoparticles provide an intrinsically higher field enhancement than conventional individual nanoparticles. The favorable scaling of plasmonic dimers at the nanometer scale and ionic diffusion at the submicron scale is leveraged to achieve strong optical resonance and rapid hydrogel response, respectively. We demonstrate that the hydrogel-coated BNAs are able to sense environmental temperature variations. The phase transition of hydrogel leads to 16.2 nm of resonant wavelength shift for the hydrogel-coated BNAs, whereas only 3 nm for the uncoated counterpart. The response time of the device to temperature variations is only 250 ms, due to the small hydrogel thickness at the submicron scale. The demonstration of the ability of the device to tune its optical resonance in response to an environmental stimulus (here, temperature) suggests a possibility of making many other tunable plasmonic devices through the incorporation of coupled plasmonic nanostructures and various environmental-responsive hydrogels. Nature Publishing Group 2015-12-18 /pmc/articles/PMC4683518/ /pubmed/26681478 http://dx.doi.org/10.1038/srep18567 Text en Copyright © 2015, Macmillan Publishers Limited http://creativecommons.org/licenses/by/4.0/ This work is licensed under a Creative Commons Attribution 4.0 International License. The images or other third party material in this article are included in the article’s Creative Commons license, unless indicated otherwise in the credit line; if the material is not included under the Creative Commons license, users will need to obtain permission from the license holder to reproduce the material. To view a copy of this license, visit http://creativecommons.org/licenses/by/4.0/
spellingShingle Article
Wang, Qiugu
Liu, Longju
Wang, Yifei
Liu, Peng
Jiang, Huawei
Xu, Zhen
Ma, Zhuo
Oren, Seval
Chow, Edmond K. C.
Lu, Meng
Dong, Liang
Tunable Optical Nanoantennas Incorporating Bowtie Nanoantenna Arrays with Stimuli-Responsive Polymer
title Tunable Optical Nanoantennas Incorporating Bowtie Nanoantenna Arrays with Stimuli-Responsive Polymer
title_full Tunable Optical Nanoantennas Incorporating Bowtie Nanoantenna Arrays with Stimuli-Responsive Polymer
title_fullStr Tunable Optical Nanoantennas Incorporating Bowtie Nanoantenna Arrays with Stimuli-Responsive Polymer
title_full_unstemmed Tunable Optical Nanoantennas Incorporating Bowtie Nanoantenna Arrays with Stimuli-Responsive Polymer
title_short Tunable Optical Nanoantennas Incorporating Bowtie Nanoantenna Arrays with Stimuli-Responsive Polymer
title_sort tunable optical nanoantennas incorporating bowtie nanoantenna arrays with stimuli-responsive polymer
topic Article
url https://www.ncbi.nlm.nih.gov/pmc/articles/PMC4683518/
https://www.ncbi.nlm.nih.gov/pubmed/26681478
http://dx.doi.org/10.1038/srep18567
work_keys_str_mv AT wangqiugu tunableopticalnanoantennasincorporatingbowtienanoantennaarrayswithstimuliresponsivepolymer
AT liulongju tunableopticalnanoantennasincorporatingbowtienanoantennaarrayswithstimuliresponsivepolymer
AT wangyifei tunableopticalnanoantennasincorporatingbowtienanoantennaarrayswithstimuliresponsivepolymer
AT liupeng tunableopticalnanoantennasincorporatingbowtienanoantennaarrayswithstimuliresponsivepolymer
AT jianghuawei tunableopticalnanoantennasincorporatingbowtienanoantennaarrayswithstimuliresponsivepolymer
AT xuzhen tunableopticalnanoantennasincorporatingbowtienanoantennaarrayswithstimuliresponsivepolymer
AT mazhuo tunableopticalnanoantennasincorporatingbowtienanoantennaarrayswithstimuliresponsivepolymer
AT orenseval tunableopticalnanoantennasincorporatingbowtienanoantennaarrayswithstimuliresponsivepolymer
AT chowedmondkc tunableopticalnanoantennasincorporatingbowtienanoantennaarrayswithstimuliresponsivepolymer
AT lumeng tunableopticalnanoantennasincorporatingbowtienanoantennaarrayswithstimuliresponsivepolymer
AT dongliang tunableopticalnanoantennasincorporatingbowtienanoantennaarrayswithstimuliresponsivepolymer