Cargando…

Turnover of Sex Chromosomes in Celebensis Group Medaka Fishes

Sex chromosomes and the sex-determining (SD) gene are variable in vertebrates. In particular, medaka fishes in the genus Oryzias show an extremely large diversity in sex chromosomes and the SD gene, providing a good model to study the evolutionary process by which they turnover. Here, we investigate...

Descripción completa

Detalles Bibliográficos
Autores principales: Myosho, Taijun, Takehana, Yusuke, Hamaguchi, Satoshi, Sakaizumi, Mitsuru
Formato: Online Artículo Texto
Lenguaje:English
Publicado: Genetics Society of America 2015
Materias:
Acceso en línea:https://www.ncbi.nlm.nih.gov/pmc/articles/PMC4683641/
https://www.ncbi.nlm.nih.gov/pubmed/26497145
http://dx.doi.org/10.1534/g3.115.021543
Descripción
Sumario:Sex chromosomes and the sex-determining (SD) gene are variable in vertebrates. In particular, medaka fishes in the genus Oryzias show an extremely large diversity in sex chromosomes and the SD gene, providing a good model to study the evolutionary process by which they turnover. Here, we investigated the sex determination system and sex chromosomes in six celebensis group species. Our sex-linkage analysis demonstrated that all species had an XX-XY sex determination system, and that the Oryzias marmoratus and O. profundicola sex chromosomes were homologous to O. latipes linkage group (LG) 10, while those of the other four species, O. celebensis, O. matanensis, O. wolasi, and O. woworae, were homologous to O. latipes LG 24. The phylogenetic relationship suggested a turnover of the sex chromosomes from O. latipes LG 24 to LG 10 within this group. Six sex-linkage maps showed that the former two and the latter four species shared a common SD locus, respectively, suggesting that the LG 24 acquired the SD function in a common ancestor of the celebensis group, and that the LG 10 SD function appeared in a common ancestor of O. marmoratus and O. profundicola after the divergence of O. matanensis. Additionally, fine mapping and association analysis in the former two species revealed that Sox3 on the Y chromosome is a prime candidate for the SD gene, and that the Y-specific 430-bp insertion might be involved in its SD function.