Cargando…

Extreme Diversity in the Regulation of Ndt80-Like Transcription Factors in Fungi

The Saccharomyces cerevisiae Ndt80 protein is the founding member of a class of p53-like transcription factors that is known as the NDT80/PhoG-like DNA-binding family. The number of NDT80-like genes in different fungi is highly variable and their roles, which have been examined in only a few species...

Descripción completa

Detalles Bibliográficos
Autores principales: Katz, Margaret E., Cooper, Sarah
Formato: Online Artículo Texto
Lenguaje:English
Publicado: Genetics Society of America 2015
Materias:
Acceso en línea:https://www.ncbi.nlm.nih.gov/pmc/articles/PMC4683649/
https://www.ncbi.nlm.nih.gov/pubmed/26497142
http://dx.doi.org/10.1534/g3.115.021378
Descripción
Sumario:The Saccharomyces cerevisiae Ndt80 protein is the founding member of a class of p53-like transcription factors that is known as the NDT80/PhoG-like DNA-binding family. The number of NDT80-like genes in different fungi is highly variable and their roles, which have been examined in only a few species, include regulation of meiosis, sexual development, biofilm formation, drug resistance, virulence, the response to nutrient stress and programmed cell death. The protein kinase Ime2 regulates the single NDT80 gene present in S. cerevisiae. In this study we used a genetic approach to investigate whether the Aspergillus nidulans Ime2 homolog, ImeB, and/or protein kinases MpkC, PhoA and PhoB regulate the two NDT80-like genes (xprG and ndtA) in A. nidulans. Disruption of imeB, but not mpkC, phoA or phoB, led to increased extracellular protease activity and a defect in mycotoxin production similar to the xprG1 gain-of-function mutation. Quantitative RT-PCR showed that ImeB is a negative regulator of xprG expression and XprG is a negative regulator of xprG and ndtA expression. Thus, in contrast to Ime2, which is a positive regulator of NDT80 in S. cerevisiae, ImeB is a negative regulator as in Neurospora crassa. However, the ability of Ndt80 to autoregulate NDT80 is conserved in A. nidulans though the autoregulatory effect is negative rather than positive. Unlike N. crassa, a null mutation in imeB does not circumvent the requirement for XprG or NdtA. These results show that the regulatory activities of Ime2 and Ndt80-like proteins display an extraordinarily level of evolutionary flexibility.